Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Feb 23 2024 04:22:29
%S 1,0,0,1,6,25,91,322,1232,5672,32202,209143,1432454,9942517,69363840,
%T 490303335,3565609732,27118060170,218183781871,1861370544934,
%U 16729411124821,156706028787827,1514442896327792,14999698898942772,151838974745743228,1571513300578303070
%N Let A(0)=1, B(0)=0 and C(0)=0. Let B(n+1) = Sum_{k = 0..n} binomial(n,k)*A(k), C(n+1) = Sum_{k = 0..n} binomial(n,k)*B(k) and A(n+1) = Sum_{k = 0..n} binomial(n,k)*C(k). This entry gives the sequence A(n).
%C Compare with A024429 and A024430.
%C This sequence and its companion sequences B(n) = A143816(n) and C(n) = A143817(n) may be viewed as generalizations of the Bell numbers A000110. Define a sequence R(n) of real numbers by R(n) = Sum_{k >= 0} (3*k)^n/(3*k)! for n = 0, 1, 2, .... It is easy to verify that this sequence satisfies the recurrence relation u(n+3) = 3*u(n+2) - 2*u(n+1) + Sum_{i = 0..n} binomial(n, i)*3^(n-i)*u(i). Hence R(n) is an integral linear combination of R(0), R(1) and R(2). Some examples are given below.
%C To find the precise form of the linear relation define two other sequences of real numbers by S(n) = Sum_{k >= 0} (3*k+1)^n/(3*k+1)! and T(n) = Sum_{k >= 0} (3*k+2)^n/(3*k+2)! for n = 0, 1, 2, .... Both S(n) and T(n) satisfy the above recurrence. Then by means of the identities S(n+1) = Sum_{i = 0..n} binomial(n, i)*R(i), T(n+1) = Sum_{i = 0..n} binomial(n, i)*S(i) and R(n+1) = Sum_{i = 0..n} binomial(n, i)*T(i) we obtain the result R(n) = A(n)*R(0) + (B(n) - C(n))*R(1) + C(n)*R(2) = A(n)*R(0) + B(n)*R(1) + C(n)*(R(2) - R(1)) (with corresponding expressions for S(n) and T(n)). This generalizes the Dobinski's relation for the Bell numbers Sum_{k >= 0} k^n/k! = A000110(n)*exp(1).
%C Some examples of R(n) as a linear combination of R(0), R(1) and R(2) - R(1) are given below. The decimal expansions of R(0) = 1 + 1/3! + 1/6! + 1/9! + ..., R(2) - R(1) = 1/1! + 1/4! + 1/7! + ... and R(1) = 1/2! + 1/5! + 1/8! + ... may be found in A143819, A143820 and A143821 respectively. Compare with A143628 through A143631.
%C For n > 0, the number of partitions of {1,2,...,n} into 3,6,9,... classes. - _Geoffrey Critzer_, Mar 05 2010
%H Alois P. Heinz, <a href="/A143815/b143815.txt">Table of n, a(n) for n = 0..576</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BellPolynomial.html">Bell Polynomial</a>.
%F a(n) = Sum_{k = 0..floor(n/3)} Stirling2(n, 3*k).
%F Let w = exp(2*Pi*i/3) and set F(x) = (exp(x) + exp(w*x) + exp(w^2*x))/3 = 1 + x^3/3! + x^6/6! + ... . Then the e.g.f. for the sequence is F(exp(x) - 1).
%F A143815(n) + A143816(n) + A143817(n) = Bell(n).
%F E.g.f. is B(A(x)) where A(x) = exp(x) - 1 and B(x) = 1/3 (exp(x) + 2 exp(-x/2) Cos[(Sqrt[3] x)/2]). - _Geoffrey Critzer_, Mar 05 2010
%F a(n) = ( Bell_n(1) + Bell_n(w) + Bell_n(w^2) )/3, where Bell_n(x) is n-th Bell polynomial and w = exp(2*Pi*i/3). - _Seiichi Manyama_, Oct 13 2022
%e R(n) as a linear combination of R(i),
%e i = 0..2.
%e ====================================
%e ..R(n)..|.....R(0)....R(1)....R(2)..
%e ====================================
%e ..R(3)..|.......1......-2.......3...
%e ..R(4)..|.......6......-5.......7...
%e ..R(5)..|......25......-5......16...
%e ..R(6)..|......91......20......46...
%e ..R(7)..|.....322.....149.....203...
%e ..R(8)..|....1232.....552....1178...
%e ..R(9)..|....5672.....991....7242...
%e ..R(10).|...32202...-3799...43786...
%e ...
%e Column 2 of the above table is A143818.
%e R(n) as a linear combination of R(0),R(1)
%e and R(2) - R(1).
%e =======================================
%e ..R(n)..|.....R(0).....R(1)...R(2)-R(1)
%e =======================================
%e ..R(3)..|.......1........1........3....
%e ..R(4)..|.......6........2........7....
%e ..R(5)..|......25.......11.......16....
%e ..R(6)..|......91.......66.......46....
%e ..R(7)..|.....322......352......203....
%e ..R(8)..|....1232.....1730.....1178....
%e ..R(9)..|....5672.....8233.....7242....
%e ..R(10).|...32202....39987....43786....
%e ...
%p # (1)
%p M:=24: a:=array(0..100): b:=array(0..100): c:=array(0..100):
%p a[0]:=1: b[0]:=0: c[0]:=0:
%p for n from 1 to M do
%p b[n]:=add(binomial(n-1,k)*a[k], k=0..n-1);
%p c[n]:=add(binomial(n-1,k)*b[k], k=0..n-1);
%p a[n]:=add(binomial(n-1,k)*c[k], k=0..n-1);
%p end do:
%p A143815:=[seq(a[n], n=0..M)];
%p # (2)
%p seq(add(Stirling2(n,3*i),i = 0..floor(n/3)), n = 0..24);
%p # third Maple program:
%p b:= proc(n, t) option remember; `if`(n=0, irem(t, 2),
%p add(b(n-j, irem(t+1, 3))*binomial(n-1, j-1), j=1..n))
%p end:
%p a:= n-> b(n, 1):
%p seq(a(n), n=0..25); # _Alois P. Heinz_, Feb 20 2018
%t a = Exp[x] - 1; f[x_] := 1/3 (E^x + 2 E^(-x/2) Cos[(Sqrt[3] x)/2]); CoefficientList[Series[f[a], {x, 0, 20}], x]*Table[n!, {n, 0, 20}] [_Geoffrey Critzer_, Mar 05 2010]
%o (PARI) Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
%o a(n) = my(w=(-1+sqrt(3)*I)/2); round(Bell_poly(n, 1)+Bell_poly(n, w)+Bell_poly(n, w^2))/3; \\ _Seiichi Manyama_, Oct 13 2022
%Y Cf. A000110, A024429, A024430, A143628, A143629, A143630, A143631, A143816, A143817, A143818, A143819, A143820, A143821.
%K easy,nonn
%O 0,5
%A _Peter Bala_, Sep 03 2008