login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333017
Twice the total area of all (open or closed) Deutsch paths of length n.
2
0, 1, 6, 25, 90, 306, 1004, 3226, 10218, 32043, 99748, 308787, 951772, 2923563, 8955342, 27368895, 83484042, 254244033, 773219196, 2348780937, 7127522136, 21609615822, 65465845254, 198189732798, 599624708588, 1813169256151, 5480019176754, 16555101318735
OFFSET
0,3
COMMENTS
Deutsch paths (named after their inventor Emeric Deutsch by Helmut Prodinger) are like Dyck paths where down steps can get to all lower levels. Open paths can end at any level, whereas closed paths have to return to the lowest level zero at the end.
LINKS
Helmut Prodinger, Deutsch paths and their enumeration, arXiv:2003.01918 [math.CO], 2020. See p. 8.
MAPLE
b:= proc(x, y) option remember; `if`(x=0, [1, 0], add((p->
p+[0, (2*y-j)*p[1]])(b(x-1, y-j)), j=[$1..y, -1]))
end:
a:= n-> b(n, 0)[2]:
seq(a(n), n=0..30);
# second Maple program:
a:= proc(n) option remember; `if`(n<4, [0, 1, 6, 25][n+1],
((1045*n^2-4419*n-9646)*a(n-1)-3*(1133*n^2-4679*n-1756)*
a(n-2)+9*(127*n^2-475*n+480)*a(n-3)+27*(210*n-439)*
(n-3)*a(n-4))/((n+3)*(83*n-677)))
end:
seq(a(n), n=0..30);
MATHEMATICA
a = DifferenceRoot[Function[{y, n}, {(-10827 - 16497 n - 5670 n^2) y[n] + (-5508 - 4869 n - 1143 n^2) y[n+1] + (-7032 + 13155 n + 3399 n^2) y[n+2] + (10602 - 3941 n - 1045 n^2) y[n+3] + (7 + n)(-345 + 83 n) y[n+4] == 0, y[0] == 0, y[1] == 1, y[2] == 6, y[3] == 25}]];
a /@ Range[0, 30] (* Jean-François Alcover, Mar 12 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 05 2020
STATUS
approved