login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143820
Decimal expansion of the constant 1/1! + 1/4! + 1/7! + ...
11
1, 0, 4, 1, 8, 6, 5, 3, 5, 5, 0, 9, 8, 9, 0, 9, 8, 4, 6, 3, 0, 1, 3, 3, 6, 6, 1, 5, 0, 2, 1, 5, 2, 7, 3, 8, 7, 6, 9, 7, 0, 8, 3, 5, 7, 1, 7, 2, 4, 1, 6, 3, 4, 5, 9, 5, 4, 5, 7, 3, 9, 2, 5, 5, 4, 2, 3, 5, 5, 1, 7, 4, 1, 1, 6, 1, 0, 7, 4, 0, 2, 9, 5, 9, 2, 8, 6, 2, 6, 7, 3, 9, 3, 0, 1, 0, 0, 6, 5, 5, 2
OFFSET
1,3
COMMENTS
Define a sequence R(n) of real numbers by R(n) := Sum_{k >= 0} (3*k)^n/(3*k)! for n = 0,1,2,... . This constant is R(2) - R(1); the decimal expansions of R(0) = 1 + 1/3! + 1/6! + ... and R(1) = 1/2! + 1/5! + 1/8! + ... may be found in A143819 and A143821. It is easy to verify that the sequence R(n) satisfies the recurrence relation u(n+3) = 3*u(n+2) - 2*u(n+1) + Sum_{i = 0..n} binomial(n,i) * 3^(n-i)*u(i). Hence R(n) is an integral linear combination of R(0), R(1) and R(2) and so also an integral linear combination of R(0), R(1) and R(2) - R(1).
R(n) as a linear combination of R(0), R(1) and R(2) - R(1).
========================================
| linear combination of
R(n) | R(0) R(1) R(2) - R(1)
========================================
R(3) | 1 1 3
R(4) | 6 2 7
R(5) | 25 11 16
R(6) | 91 66 46
R(7) | 322 352 203
R(8) | 1232 1730 1178
R(9) | 5672 8233 7242
R(10) | 32202 39987 43786
...
The column entries are from A143815, A143816 and A143817.
The Abraham Ungar 1982 article defines H_{n,r}(z) = Sum_{k>=0} z^(nk+r)/(nk+r)! as equation (1). The constant is H_{3,1}(1). In equation (13) H_{3,1}(x) = (exp(x) + 2 * exp(-x/2) * cos(sqrt(3)/2*x - 2*Pi/3))/3. In equation (12) the expression H_{3,1}(x) = (e^x + q_2 e^{q_1 x} + q_1 e^{q_2 x})/3 where q_1 = (-1 + I sqrt(3))/2 and q_2 = (-1 - I sqrt(3))/2 is given for H_{3,2}(x) instead. - Michael Somos, Nov 01 2024
LINKS
Michael I. Shamos, A catalog of the real numbers, (2011). See p. 76.
Abraham Ungar, Generalized Hyperbolic Functions, The American Mathematical Monthly, Volume 89, 1982, 688-691.
FORMULA
Equals (exp(1) + w^2*exp(w) + w*exp(w^2))/3, where w = exp(2*Pi*i/3).
A143819 + A143820 + A143821 = exp(1).
Equals Sum_{n>=0} 1/(3*n+1)!. - Michal Paulovic, Aug 20 2023
Continued fraction: 1 + 1/(24 - 24/(211 - 210/(721 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (3*n - 1)*(3*n)*(3*n + 1) for n >= 1. Cf. A346441. - Peter Bala, Feb 22 2024
Equals (exp(1) + 2*exp(-1/2)*cos(sqrt(3)/2-2*Pi/3))/3. [Ungar, p.690] - Michael Somos, Nov 01 2024
EXAMPLE
1.041865355098909...
MAPLE
Digits:=101: evalf(sum(1/(3*n+1)!, n=0..infinity)); # Michal Paulovic, Aug 20 2023
MATHEMATICA
RealDigits[ N[ (-Cos[Sqrt[3]/2] + E^(3/2) + Sqrt[3]*Sin[Sqrt[3]/2])/(3*Sqrt[E]), 105]][[1]] (* Jean-François Alcover, Nov 08 2012 *)
PROG
(PARI) suminf(n=0, 1/(3*n+1)!) \\ Michel Marcus, Aug 20 2023
KEYWORD
cons,easy,nonn
AUTHOR
Peter Bala, Sep 03 2008
EXTENSIONS
Offset corrected by R. J. Mathar, Feb 05 2009
STATUS
approved