|
|
A357087
|
|
E.g.f. satisfies A(x) * log(A(x)) = (exp(x*A(x)) - 1)^3.
|
|
1
|
|
|
1, 0, 0, 6, 36, 150, 2340, 47166, 676116, 10602150, 248197860, 6304530606, 154511054676, 4227889233750, 134462460901860, 4519745455581726, 157756124072317716, 5960350758700381830, 243292987180534250340, 10433760831781705395726, 469420864688765414084436
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{k=0..floor(n/3)} (3*k)! * (n-k+1)^(k-1) * Stirling2(n,3*k)/k!.
|
|
PROG
|
(PARI) a(n) = sum(k=0, n\3, (3*k)!*(n-k+1)^(k-1)*stirling(n, 3*k, 2)/k!);
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|