login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224149
Number of 5 X n 0..1 arrays with rows and antidiagonals unimodal and columns nondecreasing.
1
6, 36, 155, 526, 1509, 3827, 8838, 18969, 38392, 74053, 137204, 245636, 426869, 722624, 1194983, 1934737, 3072530, 4793530, 7356497, 11118274, 16564901, 24350745, 35347252, 50703161, 71918276, 100933171, 140237506, 192999960
OFFSET
1,1
COMMENTS
Row 5 of A224146.
LINKS
FORMULA
Empirical: a(n) = (1/3628800)*n^10 + (1/241920)*n^9 + (11/120960)*n^8 + (59/40320)*n^7 + (3853/172800)*n^6 + (181/1280)*n^5 + (100381/181440)*n^4 + (76319/60480)*n^3 + (24247/12600)*n^2 + (23/21)*n + 1.
Conjectures from Colin Barker, Aug 28 2018: (Start)
G.f.: x*(6 - 30*x + 89*x^2 - 189*x^3 + 288*x^4 - 309*x^5 + 236*x^6 - 127*x^7 + 46*x^8 - 10*x^9 + x^10) / (1 - x)^11.
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11) for n>11.
(End)
EXAMPLE
Some solutions for n=3:
..0..1..0....0..0..0....0..1..0....0..0..0....0..0..0....0..0..1....0..0..0
..1..1..0....0..0..0....0..1..0....0..1..0....0..1..0....0..0..1....1..0..0
..1..1..1....0..1..0....0..1..0....0..1..1....1..1..0....0..1..1....1..1..0
..1..1..1....0..1..0....0..1..0....1..1..1....1..1..0....0..1..1....1..1..0
..1..1..1....1..1..1....1..1..1....1..1..1....1..1..1....0..1..1....1..1..1
CROSSREFS
Cf. A224146.
Sequence in context: A357087 A357025 A357085 * A055404 A223946 A223919
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 31 2013
STATUS
approved