login
A224147
Number of 3 X n 0..1 arrays with rows and antidiagonals unimodal and columns nondecreasing.
1
4, 16, 49, 124, 275, 554, 1037, 1831, 3082, 4984, 7789, 11818, 17473, 25250, 35753, 49709, 67984, 91600, 121753, 159832, 207439, 266410, 338837, 427091, 533846, 662104, 815221, 996934, 1211389, 1463170, 1757329, 2099417, 2495516, 2952272
OFFSET
1,1
COMMENTS
Row 3 of A224146.
LINKS
FORMULA
Empirical: a(n) = (1/720)*n^6 + (1/80)*n^5 + (23/144)*n^4 + (29/48)*n^3 + (241/180)*n^2 + (53/60)*n + 1.
Conjectures from Colin Barker, Aug 28 2018: (Start)
G.f.: x*(4 - 12*x + 21*x^2 - 23*x^3 + 16*x^4 - 6*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
EXAMPLE
Some solutions for n=3:
..0..0..0....0..0..0....0..0..1....0..1..0....0..0..0....0..0..0....0..0..0
..0..1..1....0..0..0....0..0..1....0..1..0....0..0..1....1..0..0....1..1..1
..1..1..1....0..0..0....0..1..1....0..1..0....0..0..1....1..1..0....1..1..1
CROSSREFS
Cf. A224146.
Sequence in context: A119005 A237986 A086601 * A227266 A114185 A378673
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 31 2013
STATUS
approved