login
A224145
Number of n X 7 0..1 arrays with rows and antidiagonals unimodal and columns nondecreasing.
1
29, 239, 1037, 3296, 8838, 21183, 46586, 95455, 184222, 337727, 592178, 998751, 1627894, 2574399, 3963306, 5956703, 8761486, 12638143, 17910626, 24977375, 34323558, 46534591, 62311002, 82484703, 108036734, 140116543, 180062866
OFFSET
1,1
COMMENTS
Column 7 of A224146.
LINKS
FORMULA
Empirical: a(n) = (4/315)*n^7 + (4/45)*n^6 + (34/45)*n^5 + (29/9)*n^4 + (508/45)*n^3 + (1156/45)*n^2 + (1328/35)*n - 161 for n>4.
Conjectures from Colin Barker, Aug 28 2018: (Start)
G.f.: x*(29 + 7*x - 63*x^2 + 68*x^3 + 152*x^4 - 199*x^5 + 28*x^6 + 71*x^7 - 21*x^8 - 12*x^9 + 3*x^10 + x^11) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>12.
(End)
EXAMPLE
Some solutions for n=3:
..0..0..0..0..0..0..0....0..0..0..0..0..0..0....0..0..0..0..0..0..0
..0..0..1..1..1..1..0....0..0..1..0..0..0..0....0..0..0..1..1..1..0
..0..0..1..1..1..1..1....0..0..1..0..0..0..0....0..0..0..1..1..1..1
CROSSREFS
Cf. A224146.
Sequence in context: A223837 A126426 A126425 * A225009 A177419 A142559
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 31 2013
STATUS
approved