login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353118
Expansion of e.g.f. 1/(1 + log(1 - x)^3).
9
1, 0, 0, 6, 36, 210, 2070, 24864, 310632, 4337544, 68922360, 1205002656, 22844264256, 469287123552, 10397824478496, 246800350393344, 6246190572981120, 167972669001740160, 4783274802508890240, 143775432034543203840, 4548946867429143444480
OFFSET
0,4
LINKS
FORMULA
a(0) = 1; a(n) = 6 * Sum_{k=1..n} binomial(n,k) * |Stirling1(k,3)| * a(n-k).
a(n) = Sum_{k=0..floor(n/3)} (3*k)! * |Stirling1(n,3*k)|.
a(n) ~ sqrt(2*Pi) * n^(n + 1/2) / (3 * (exp(1) - 1)^(n+1)). - Vaclav Kotesovec, May 07 2022
MATHEMATICA
With[{nn=20}, CoefficientList[Series[1/(1+Log[1-x]^3), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Mar 04 2023 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+log(1-x)^3)))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=6*sum(j=1, i, binomial(i, j)*abs(stirling(j, 3, 1))*v[i-j+1])); v;
(PARI) a(n) = sum(k=0, n\3, (3*k)!*abs(stirling(n, 3*k, 1)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 06 2022
STATUS
approved