login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357027
E.g.f. satisfies A(x) = 1/(1 - x)^(log(1 - x)^2 * A(x)).
1
1, 0, 0, 6, 36, 210, 2430, 32424, 426552, 6575304, 118916640, 2328078456, 49421111256, 1153979875152, 29201577206256, 791744021665344, 22988121190902720, 712541051083100160, 23447653175729566080, 816434611464004145280, 30009023179153182132480
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f. satisfies log(A(x)) = -log(1 - x)^3 * A(x).
a(n) = Sum_{k=0..floor(n/3)} (3*k)! * (k+1)^(k-1) * |Stirling1(n,3*k)|/k!.
E.g.f.: A(x) = Sum_{k>=0} (k+1)^(k-1) * (-log(1 - x))^(3*k) / k!.
E.g.f.: A(x) = exp( -LambertW(log(1-x)^3) ).
E.g.f.: A(x) = LambertW(log(1 - x)^3)/log(1 - x)^3.
MATHEMATICA
m = 21; (* number of terms *)
A[_] = 0;
Do[A[x_] = 1/(1 - x)^(Log[1 - x]^2*A[x]) + O[x]^m // Normal, {m}];
CoefficientList[A[x], x]*Range[0, m - 1]! (* Jean-François Alcover, Sep 12 2022 *)
PROG
(PARI) a(n) = sum(k=0, n\3, (3*k)!*(k+1)^(k-1)*abs(stirling(n, 3*k, 1))/k!);
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^(k-1)*(-log(1-x))^(3*k)/k!)))
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(log(1-x)^3))))
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(lambertw(log(1-x)^3)/log(1-x)^3))
CROSSREFS
Sequence in context: A292297 A353344 A353118 * A357093 A357029 A358859
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 09 2022
STATUS
approved