OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f. satisfies log(A(x)) = log(1 - x)^2 * A(x).
a(n) = Sum_{k=0..floor(n/2)} (2*k)! * (k+1)^(k-1) * |Stirling1(n,2*k)|/k!.
E.g.f.: A(x) = Sum_{k>=0} (k+1)^(k-1) * log(1 - x)^(2*k) / k!.
E.g.f.: A(x) = exp( -LambertW(-log(1-x)^2) ).
E.g.f.: A(x) = -LambertW(-log(1 - x)^2)/log(1 - x)^2.
MATHEMATICA
m = 21; (* number of terms *)
A[_] = 0;
Do[A[x_] = (1 - x)^(Log[1 - x]*A[x]) + O[x]^m // Normal, {m}];
CoefficientList[A[x], x]*Range[0, m - 1]! (* Jean-François Alcover, Sep 12 2022 *)
PROG
(PARI) a(n) = sum(k=0, n\2, (2*k)!*(k+1)^(k-1)*abs(stirling(n, 2*k, 1))/k!);
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^(k-1)*log(1-x)^(2*k)/k!)))
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-log(1-x)^2))))
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(-lambertw(-log(1-x)^2)/log(1-x)^2))
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Seiichi Manyama, Sep 09 2022
STATUS
approved