login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052748
Expansion of e.g.f.: -(log(1-x))^3.
5
0, 0, 0, 6, 36, 210, 1350, 9744, 78792, 708744, 7036200, 76521456, 905507856, 11589357312, 159580302336, 2352940786944, 36994905688320, 617953469022720, 10929614667747840, 204073497562936320, 4011658382046919680, 82822558521844224000, 1791791417179298304000
OFFSET
0,4
COMMENTS
Original name: A simple grammar.
LINKS
FORMULA
E.g.f.: log(1/(1-x))^3.
Recurrence: {a(1)=0, a(0)=0, a(2)=0, a(3)=6, (-1 - 3*n - 3*n^2 - n^3)*a(n+1) + (9*n + 7 + 3*n^2)*a(n+2) + (-6 - 3*n)*a(n+3) + a(n+4)}.
a(n) = stirling1(n, 3)*3!*(-1)^(n+1). - Leonid Bedratyuk, Aug 07 2012
a(n) = 6*A000399(n). - Andrew Howroyd, Jul 27 2020
MAPLE
spec := [S, {B=Cycle(Z), S=Prod(B, B, B)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
with(combinat):seq(stirling1(j, 3)*3!*(-1)^(j+1), j=0..50); # Leonid Bedratyuk, Aug 07 2012
PROG
(PARI) a(n) = {3!*stirling(n, 3, 1)*(-1)^(n+1)} \\ Andrew Howroyd, Jul 27 2020
CROSSREFS
Column k=3 of A225479.
Sequence in context: A123887 A358539 A105492 * A292297 A353344 A353118
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
Name changed and terms a(20) and beyond from Andrew Howroyd, Jul 27 2020
STATUS
approved