login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052748 Expansion of e.g.f.: -(log(1-x))^3. 3
0, 0, 0, 6, 36, 210, 1350, 9744, 78792, 708744, 7036200, 76521456, 905507856, 11589357312, 159580302336, 2352940786944, 36994905688320, 617953469022720, 10929614667747840, 204073497562936320, 4011658382046919680, 82822558521844224000, 1791791417179298304000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Original name: A simple grammar.

LINKS

Andrew Howroyd, Table of n, a(n) for n = 0..200

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 704

FORMULA

E.g.f.: log(1/(1-x))^3.

Recurrence: {a(1)=0, a(0)=0, a(2)=0, a(3)=6, (-1 - 3*n - 3*n^2 - n^3)*a(n+1) + (9*n + 7 + 3*n^2)*a(n+2) + (-6 - 3*n)*a(n+3) + a(n+4)}.

a(n) = stirling1(n, 3)*3!*(-1)^(n+1). - Leonid Bedratyuk, Aug 07 2012

a(n) = 6*A000399(n). - Andrew Howroyd, Jul 27 2020

MAPLE

spec := [S, {B=Cycle(Z), S=Prod(B, B, B)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);

with(combinat):seq(stirling1(j, 3)*3!*(-1)^(j+1), j=0..50); # Leonid Bedratyuk, Aug 07 2012

PROG

(PARI) a(n) = {3!*stirling(n, 3, 1)*(-1)^(n+1)} \\ Andrew Howroyd, Jul 27 2020

CROSSREFS

Column k=3 of A225479.

Cf. A000399, A052517.

Sequence in context: A269464 A123887 A105492 * A292297 A268454 A171280

Adjacent sequences:  A052745 A052746 A052747 * A052749 A052750 A052751

KEYWORD

easy,nonn

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

EXTENSIONS

Name changed and terms a(20) and beyond from Andrew Howroyd, Jul 27 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 19:36 EDT 2021. Contains 347608 sequences. (Running on oeis4.)