login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f.: -(log(1-x))^3.
5

%I #25 Jul 27 2020 16:46:07

%S 0,0,0,6,36,210,1350,9744,78792,708744,7036200,76521456,905507856,

%T 11589357312,159580302336,2352940786944,36994905688320,

%U 617953469022720,10929614667747840,204073497562936320,4011658382046919680,82822558521844224000,1791791417179298304000

%N Expansion of e.g.f.: -(log(1-x))^3.

%C Original name: A simple grammar.

%H Andrew Howroyd, <a href="/A052748/b052748.txt">Table of n, a(n) for n = 0..200</a>

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=704">Encyclopedia of Combinatorial Structures 704</a>

%F E.g.f.: log(1/(1-x))^3.

%F Recurrence: {a(1)=0, a(0)=0, a(2)=0, a(3)=6, (-1 - 3*n - 3*n^2 - n^3)*a(n+1) + (9*n + 7 + 3*n^2)*a(n+2) + (-6 - 3*n)*a(n+3) + a(n+4)}.

%F a(n) = stirling1(n, 3)*3!*(-1)^(n+1). - _Leonid Bedratyuk_, Aug 07 2012

%F a(n) = 6*A000399(n). - _Andrew Howroyd_, Jul 27 2020

%p spec := [S,{B=Cycle(Z),S=Prod(B,B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);

%p with(combinat):seq(stirling1(j, 3)*3!*(-1)^(j+1), j=0..50); # _Leonid Bedratyuk_, Aug 07 2012

%o (PARI) a(n) = {3!*stirling(n,3,1)*(-1)^(n+1)} \\ _Andrew Howroyd_, Jul 27 2020

%Y Column k=3 of A225479.

%Y Cf. A000399, A052517.

%K easy,nonn

%O 0,4

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000

%E Name changed and terms a(20) and beyond from _Andrew Howroyd_, Jul 27 2020