login
Expansion of e.g.f. 1/(1 - (exp(x) - 1)^3).
7

%I #19 May 09 2022 08:38:28

%S 1,0,0,6,36,150,1260,16926,197316,2286150,32821020,548528046,

%T 9515702196,174531124950,3521913283980,76969474578366,

%U 1777400236160676,43405229295464550,1126972561394470140,30949983774936839886,893095888222540548756,27035433957000465352950

%N Expansion of e.g.f. 1/(1 - (exp(x) - 1)^3).

%H Seiichi Manyama, <a href="/A353774/b353774.txt">Table of n, a(n) for n = 0..424</a>

%F G.f.: Sum_{k>=0} (3*k)! * x^(3*k)/Product_{j=1..3*k} (1 - j * x).

%F a(0) = 1; a(n) = 6 * Sum_{k=1..n} binomial(n,k) * Stirling2(k,3) * a(n-k).

%F a(n) = Sum_{k=0..floor(n/3)} (3*k)! * Stirling2(n,3*k).

%F a(n) ~ n! / (6 * log(2)^(n+1)). - _Vaclav Kotesovec_, May 08 2022

%o (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-(exp(x)-1)^3)))

%o (PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (3*k)!*x^(3*k)/prod(j=1, 3*k, 1-j*x)))

%o (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=6*sum(j=1, i, binomial(i, j)*stirling(j, 3, 2)*v[i-j+1])); v;

%o (PARI) a(n) = sum(k=0, n\3, (3*k)!*stirling(n, 3*k, 2));

%Y Cf. A000670, A052841, A353775.

%Y Cf. A143815, A346894, A353118, A353664.

%K nonn

%O 0,4

%A _Seiichi Manyama_, May 07 2022