login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119693
a(n) = binomial(2*n,n) * Fibonacci(n)/2.
1
0, 1, 3, 20, 105, 630, 3696, 22308, 135135, 826540, 5080790, 31391724, 194699232, 1211669900, 7561979100, 47310843600, 296633172465, 1863384566670, 11725074807600, 73889273973900, 466265883733650, 2945885346810120, 18632848373222460, 117972712180416600
OFFSET
0,3
FORMULA
a(n) = A119692(n)/2.
Sum_{n>=0} a(n)/8^n = 1/sqrt(10). - Amiram Eldar, May 04 2023
G.f.: (1+8*x-sqrt(1-4*x-16*x^2))/(2*sqrt(5)*sqrt(1-4*x-16*x^2)*sqrt(3+4*x+2*sqrt(1-4*x-16*x^2))). - Vladimir Kruchinin, Apr 29 2024
MAPLE
seq(binomial(2*n, n)*combinat[fibonacci](n)/2, n=0..27);
MATHEMATICA
a[n_] := Binomial[2*n, n] * Fibonacci[n] / 2; Array[a, 30, 0] (* Amiram Eldar, May 04 2023 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Zerinvary Lajos, Jun 09 2006
STATUS
approved