login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (2n+3)!/(n!*(n+2)!).
9

%I #53 Sep 08 2022 08:44:28

%S 3,20,105,504,2310,10296,45045,194480,831402,3527160,14872858,

%T 62403600,260757900,1085822640,4508102925,18668849760,77138650050,

%U 318107374200,1309542023790,5382578744400,22093039119060,90567738003600,370847442355650,1516927277253024

%N a(n) = (2n+3)!/(n!*(n+2)!).

%C G.f.: c(x)*(4-c(x))/(1-4*x)^(3/2), c(x) = g.f. for Catalan numbers A000108 (agrees with Hansen, 1975, p. 99, (5.27.9)). Convolution of A038679 with A000984 (central binomial coefficients); also convolution of A038665 with A000302 (powers of 4). - _Wolfdieter Lang_, Dec 11 1999

%C Appears as diagonal in A003506. - _Zerinvary Lajos_, Apr 12 2006

%C a(n) is the number of double rises in all Grand Dyck paths of semilength n+2. Example: a(0)=3 because in the 6 (=A000984(2)) Grand Dyck paths of semilength 2, namely udud, (uu)dd, uddu, d(uu)d, dudu, dd(uu), we have a total of 3 uu's (shown between parentheses). - _Emeric Deutsch_, Nov 29 2008

%D Eldon R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, 1975, p. 99, (5.27.9).

%H T. D. Noe, <a href="/A000917/b000917.txt">Table of n, a(n) for n = 0..200</a>

%H Jian Zhou, <a href="https://arxiv.org/abs/2108.10514">On Some Mathematics Related to the Interpolating Statistics</a>, arXiv:2108.10514 [math-ph], 2021.

%F a(n) = (n+1)*binomial(2*n+3, n+1) = (n+1)*A001700(n+1). - _Vincenzo Librandi_, Jun 01 2016

%F a(n) = (2*n+3)*A001791(n+1). - _R. J. Mathar_, Nov 09 2021

%F D-finite with recurrence +(n+2)*a(n) +10*(-n-1)*a(n-1) +12*(2*n+1)*a(n-2)=0. - _R. J. Mathar_, Nov 09 2021

%F D-finite with recurrence n*(n+2)*a(n) -2*(2*n+3)*(n+1)*a(n-1)=0. - _R. J. Mathar_, Nov 09 2021

%F From _Amiram Eldar_, Jan 24 2022: (Start)

%F Sum_{n>=0} 1/a(n) = 1 - Pi/(3*sqrt(3)) = 1 - A073010.

%F Sum_{n>=0} (-1)^n/a(n) = 6*log(phi)/sqrt(5) - 1, where phi is the golden ratio (A001622). (End)

%p a := proc(n) (n+1)*binomial(2*n+3, n+2) end: seq(a(n), n=0..23); # _Zerinvary Lajos_, Nov 26 2006

%p seq((n+1)*binomial(2*n+4, n+2)/2, n=0..23); # _Zerinvary Lajos_, Feb 28 2007

%t Table[(2*n + 3)!/(n!*(n + 2)!), {n, 0, 25}] (* _T. D. Noe_, Jun 20 2012 *)

%o (Magma) [(n+1)*Binomial(2*n+3, n+1): n in [0..25]]; // _Vincenzo Librandi_, Jun 01 2016

%Y Cf. A001622, A001791, A007054, A038665, A038679, A000108, A000984, A000302, A003506, A073010.

%Y 1/beta(n, n+2) in A061928.

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_