login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array T(n,m) = 1/beta(n+1,m+1) read by antidiagonals.
6

%I #24 Apr 16 2020 22:52:07

%S 6,12,12,20,30,20,30,60,60,30,42,105,140,105,42,56,168,280,280,168,56,

%T 72,252,504,630,504,252,72,90,360,840,1260,1260,840,360,90,110,495,

%U 1320,2310,2772,2310,1320,495,110,132,660,1980,3960,5544,5544,3960

%N Array T(n,m) = 1/beta(n+1,m+1) read by antidiagonals.

%C beta(n+1,m+1) = Integral_{x=0..1} x^n * (1-x)^m dx for real n, m.

%D G. Boole, A Treatise On The Calculus of Finite Differences, Dover, 1960, p. 26.

%F beta(n+1, m+1) = gamma(n+1)*gamma(m+1)/gamma(n+m+2) = n!*m!/(n+m+1)!.

%e Antidiagonals:

%e 6,

%e 12, 12,

%e 20, 30, 20,

%e 30, 60, 60, 30,

%e ...

%e Array:

%e 6 12 20 30 42

%e 12 30 60 105 168

%e 20 60 140 280 504

%e 30 105 280 630 1260

%e 42 168 504 1260 2772

%t t[n_, m_] := 1/Beta[n+1, m+1]; Take[ Flatten[ Table[ t[n+1-m, m], {n, 1, 10}, {m, 1, n}]], 52] (* _Jean-François Alcover_, Oct 11 2011 *)

%o (PARI) A(i,j)=if(i<1||j<1,0,1/subst(intformal(x^i*(1-x)^j),x,1)) /* _Michael Somos_, Feb 05 2004 */

%o (PARI) A(i,j)=if(i<1||j<1,0,1/sum(k=0,i,(-1)^k*binomial(i,k)/(j+1+k))) /* _Michael Somos_, Feb 05 2004 */

%o (Python)

%o from sympy import factorial as f

%o def T(n, m): return f(n + m + 1)/(f(n)*f(m))

%o for n in range(1, 11): print([T(m, n - m + 1) for m in range(1, n + 1)]) # _Indranil Ghosh_, Apr 29 2017

%Y Rows: 1/b(n, 2): A002378, 1/b(n, 3): A027480, 1/b(n, 4): A033488. Diagonals: 1/b(n, n): A002457, 1/b(n, n+1) A005430, 1/b(n, n+2): A000917.

%Y T(i, j)=A003506(i+1, j+1).

%K nonn,tabl,easy,nice

%O 1,1

%A _Frank Ellermann_, May 22 2001