login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033488
a(n) = n*(n+1)*(n+2)*(n+3)/6.
16
0, 4, 20, 60, 140, 280, 504, 840, 1320, 1980, 2860, 4004, 5460, 7280, 9520, 12240, 15504, 19380, 23940, 29260, 35420, 42504, 50600, 59800, 70200, 81900, 95004, 109620, 125860, 143840, 163680, 185504, 209440
OFFSET
0,2
COMMENTS
With two initial 0, convolution of the oblong numbers (A002378) with the nonnegative even numbers (A005843). - Bruno Berselli, Oct 24 2016
LINKS
FORMULA
a(n) = n*C(3+n, 3). - Zerinvary Lajos, Jan 10 2006
G.f.: 4*x/(1-x)^5. - Colin Barker, Mar 01 2012
G.f.: 2*x/(1-x)*W(0), where W(k) = 1 + 1/( 1 - x*(k+2)*(k+4)/(x*(k+2)*(k+4) + (k+1)*(k+2)/W(k+1) )) ); (continued fraction). - Sergei N. Gladkovskii, Aug 24 2013
From Amiram Eldar, Jun 02 2022: (Start)
Sum_{n>=1} 1/a(n) = 1/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 8*log(2) - 16/3. (End)
MAPLE
[seq(4*binomial(n+3, 4), n=0..35)]; # Zerinvary Lajos, Nov 24 2006
MATHEMATICA
f[n_]:=n*(n+1)*(n+2)*(n+3)/6; lst={}; Do[AppendTo[lst, f[n]], {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 21 2009 *)
# Binomial[#+3, 3]&/@ Range[0, 40] (* Harvey P. Dale, Feb 20 2011 *)
PROG
(Magma) [n*(n+1)*(n+2)*(n+3)/6: n in [0..40]]; // Vincenzo Librandi, Apr 28 2011
(Maxima) A033488(n):=n*(n+1)*(n+2)*(n+3)/6$ makelist(A033488(n), n, 0, 20); /* Martin Ettl, Jan 22 2013 */
CROSSREFS
1/beta(n, 4) in A061928.
Convolution of the oblong numbers with the odd numbers: A008911.
Fourth column of A003506.
Sequence in context: A196295 A196213 A196680 * A018211 A135507 A197404
KEYWORD
nonn,easy
STATUS
approved