login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033491
a(n) is the smallest integer that takes n halving and tripling steps to reach 1 in the 3x+1 problem.
15
1, 2, 4, 8, 16, 5, 10, 3, 6, 12, 24, 48, 17, 34, 11, 22, 7, 14, 28, 9, 18, 36, 72, 25, 49, 98, 33, 65, 130, 43, 86, 172, 57, 114, 39, 78, 153, 305, 105, 203, 406, 135, 270, 540, 185, 361, 123, 246, 481, 169, 329, 641, 219, 427, 159, 295, 569, 1138, 379, 758, 283, 505
OFFSET
0,2
COMMENTS
a(n) is the smallest term in n-th row of A127824. - Reinhard Zumkeller, Nov 29 2012
Interestingly, there are many n such that a(n) = 2*a(n-1). - Dmitry Kamenetsky, Feb 11 2017
a(n) is the position of the first occurrence of n in A006577. - Sean A. Irvine, Jul 07 2020
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1924 (from Eric Roosendaal's data) [Roosendaal's table is now complete through 2007 - N. J. A. Sloane, Oct 21 2012]
Eric Roosendaal, 3x+1 Class Records
Eric Weisstein's World of Mathematics, Collatz Problem
MATHEMATICA
f[ n_ ] := Module[ {i = 0, m = n}, While[ m != 1, m = If[ OddQ[ m ], 3m + 1, m/2 ]; i++ ]; i ]; a = Table[ 0, {75} ]; Do[ m = f[ n ]; If[ a[[ m + 1 ]] == 0, a[[ m + 1 ]] = n ], {n, 1, 1250} ]; a
With[{c=Table[Length[NestWhileList[If[OddQ[#], 3#+1, #/2]&, n, #!=1&]], {n, 2000}]}, Flatten[Table[Position[c, i, 1, 1], {i, 70}]]] (* Harvey P. Dale, Jan 06 2013 *)
PROG
(PARI) a(n)=if(n<0, 0, k=1; while(abs(if(k<0, 0, s=k; c=1; while((1-(s%2))*s/2+(s%2)*(3*s+1)>1, s=(1-(s%2))*s/2+(s%2)*(3*s+1); c++); c)-n-1)>0, k++); k)
(Haskell)
a033491 = head . a127824_row -- Reinhard Zumkeller, Nov 29 2012
(Python)
import numpy
nupto = 62
A033491 = numpy.zeros(nupto, dtype=object)
k, counter = 1, 0
while counter < nupto:
kk, n = k, 0
while n <= nupto and kk != 1:
if kk % 2 == 0:
kk //= 2
else:
kk = (kk*3+1)//2
n += 1
n += 1
if n < nupto and not A033491[n]:
A033491[n] = k
counter += 1
k += 1
print(list(A033491)) # Karl-Heinz Hofmann, Feb 11 2023
CROSSREFS
Cf. A126727 (missing numbers).
Sequence in context: A302030 A167426 A261702 * A050076 A276070 A070337
KEYWORD
nonn,nice,look
AUTHOR
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Apr 27 2001
STATUS
approved