login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n*(n+1)*(n+2)*(n+3)/6.
16

%I #49 Jul 21 2022 15:53:24

%S 0,4,20,60,140,280,504,840,1320,1980,2860,4004,5460,7280,9520,12240,

%T 15504,19380,23940,29260,35420,42504,50600,59800,70200,81900,95004,

%U 109620,125860,143840,163680,185504,209440

%N a(n) = n*(n+1)*(n+2)*(n+3)/6.

%C With two initial 0, convolution of the oblong numbers (A002378) with the nonnegative even numbers (A005843). - _Bruno Berselli_, Oct 24 2016

%H Vincenzo Librandi, <a href="/A033488/b033488.txt">Table of n, a(n) for n = 0..700</a>

%F a(n) = n*C(3+n, 3). - _Zerinvary Lajos_, Jan 10 2006

%F G.f.: 4*x/(1-x)^5. - _Colin Barker_, Mar 01 2012

%F G.f.: 2*x/(1-x)*W(0), where W(k) = 1 + 1/( 1 - x*(k+2)*(k+4)/(x*(k+2)*(k+4) + (k+1)*(k+2)/W(k+1) )) ); (continued fraction). - _Sergei N. Gladkovskii_, Aug 24 2013

%F From _Amiram Eldar_, Jun 02 2022: (Start)

%F Sum_{n>=1} 1/a(n) = 1/3.

%F Sum_{n>=1} (-1)^(n+1)/a(n) = 8*log(2) - 16/3. (End)

%p [seq(4*binomial(n+3, 4), n=0..35)]; # _Zerinvary Lajos_, Nov 24 2006

%t f[n_]:=n*(n+1)*(n+2)*(n+3)/6; lst={};Do[AppendTo[lst,f[n]],{n,0,5!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Jul 21 2009 *)

%t # Binomial[#+3,3]&/@ Range[0,40] (* _Harvey P. Dale_, Feb 20 2011 *)

%o (Magma) [n*(n+1)*(n+2)*(n+3)/6: n in [0..40]]; // _Vincenzo Librandi_, Apr 28 2011

%o (Maxima) A033488(n):=n*(n+1)*(n+2)*(n+3)/6$ makelist(A033488(n),n,0,20); /* _Martin Ettl_, Jan 22 2013 */

%Y 1/beta(n, 4) in A061928.

%Y Cf. A000332, A034827, A050534.

%Y Cf. A002378, A005843.

%Y Convolution of the oblong numbers with the odd numbers: A008911.

%Y Fourth column of A003506.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_