login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185646
Square array A(n,m), n>=0, m>=0, read by antidiagonals, where column m is the expansion of g.f. 1/ (1-x^1*(1-x^(m+1))/ (1-x^2*(1-x^(m+2))/ (1- ... ))).
12
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, -1, 1, 1, 1, 2, 2, 1, 0, 1, 1, 1, 2, 3, 3, 1, 0, 1, 1, 1, 2, 3, 4, 5, 1, -1, 1, 1, 1, 2, 3, 5, 7, 6, 1, 0, 1, 1, 1, 2, 3, 5, 8, 11, 10, 1, 0, 1, 1, 1, 2, 3, 5, 9, 13, 17, 14, 1, 0, 1, 1, 1, 2, 3, 5, 9, 14, 22, 28, 21, 1, 0
OFFSET
0,19
LINKS
Paul D. Hanna et al., Formula Needed for a Family of Continued Fractions and follow-up messages on the SeqFan list, Jul 28 2013
EXAMPLE
Square array A(n,m) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, 2, ...
0, 1, 2, 3, 3, 3, 3, 3, 3, ...
-1, 1, 3, 4, 5, 5, 5, 5, 5, ...
0, 1, 5, 7, 8, 9, 9, 9, 9, ...
0, 1, 6, 11, 13, 14, 15, 15, 15, ...
-1, 1, 10, 17, 22, 24, 25, 26, 26, ...
MATHEMATICA
nMax = 12; col[m_ /; 0 <= m <= nMax] := 1/(1 + ContinuedFractionK[-x^k (1 - x^(m + k)), 1, {k, 1, Ceiling[nMax/2]}]) + O[x]^(2 nMax) // CoefficientList[#, x]&; A = Table[col[m][[1 ;; nMax + 1]], {m, 0, nMax}] // Transpose; a[n_ /; 0 <= n <= nMax, m_ /; 0 <= m <= nMax] := With[{n1 = n + 1, m1 = m + 1}, A[[n1, m1]]]; Table[a[n - m, m], {n, 0, nMax}, {m, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 03 2016 *)
CROSSREFS
Diagonal gives: A005169.
Sequence in context: A064531 A274468 A211993 * A037829 A270992 A117546
KEYWORD
sign,tabl
AUTHOR
Alois P. Heinz, Aug 29 2013
STATUS
approved