login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274468
The length of the initial uninterrupted number of tau numbers in the chain defined by repeated subtraction of the number of divisors, starting with the n-th tau number.
2
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 3, 2, 4, 5, 5, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 3, 1, 2, 1, 1, 1, 1, 1
OFFSET
1,6
COMMENTS
This is the persistence of the n-th tau number staying a tau number under the map x->A049820(x).
Records: 1, 2,...,8 occur at n=1, 6, 14, 16, 17, 7393, 7394, 8064,...
LINKS
EXAMPLE
a(196)=4 because the 196th tau number is 2016. Subtracting tau(2016)=36 gives 1980, which is a tau number. Subtracting tau(1980)=36 gives 1944, which is a tau number. Subtracting tau(1944)=24 gives 1920, which is a tau number. Subtracting tau(1920)=32 gives 1888 which is not a tau number. The length of the chain 2016->1980->1944->1920 is 4.
MAPLE
isA033950 := proc(n)
if n <= 0 then
false;
elif n = 1 then
true;
else
modp(n, numtheory[tau](n)) = 0 ;
end if;
end proc:
A274468 := proc(n)
option remember;
local a, t ;
t := A033950(n) ;
a := 1 ;
while true do
t := A049820(t) ;
if isA033950(t) then
a := a+1 ;
else
break;
end if;
end do:
a ;
end proc:
MATHEMATICA
isA033950[n_] := Which[n <= 0, False, n == 1, True, True, IntegerQ[ n/DivisorSigma[0, n]]];
A033950[n_] := A033950[n] = Module[{k}, If[n == 1, 1, For[k = A033950[n-1] + 1, True, k++, If[IntegerQ[k/DivisorSigma[0, k]], Return[k]]]]];
A274468[n_] := A274468[n] = Module[{a, t}, t = A033950[n]; a = 1; While[ True, t = t-DivisorSigma[0, t]; If[isA033950[t], a++, Break[]]]; a];
Table[A274468[n], {n, 1, 100}] (* Jean-François Alcover, Aug 11 2023, after R. J. Mathar *)
CROSSREFS
Sequence in context: A095684 A205565 A064531 * A211993 A185646 A037829
KEYWORD
nonn
AUTHOR
R. J. Mathar, Jun 24 2016
STATUS
approved