login
A020047
a(n) = floor(Gamma(n+7/12)/Gamma(7/12)).
2
1, 0, 0, 2, 8, 39, 218, 1440, 10922, 93754, 898484, 9508956, 110145408, 1385996396, 18826451052, 274552411175, 4278441740820, 70950825535270, 1247552015661833, 23183674957715736, 454013634588599833
OFFSET
0,4
LINKS
MAPLE
Digits := 64:f := proc(n, x) trunc(GAMMA(n+x)/GAMMA(x)); end;
seq(floor(pochhammer(7/12, n)), n = 0..25); # G. C. Greubel, Dec 01 2019
MATHEMATICA
Floor[Pochhammer[7/12, Range[0, 25]]] (* G. C. Greubel, Dec 01 2019 *)
PROG
(PARI) x=7/12; vector(26, n, gamma(n-1+x)\gamma(x) ) \\ G. C. Greubel, Dec 01 2019
(Magma) [Floor(Gamma(n+7/12)/Gamma(7/12)): n in [0..25]]; // G. C. Greubel, Dec 01 2019
(Sage) [floor(rising_factorial(7/12, n)) for n in (0..25)] # G. C. Greubel, Dec 01 2019
CROSSREFS
Sequence in context: A292100 A185650 A059275 * A231496 A347665 A068107
KEYWORD
nonn
AUTHOR
STATUS
approved