The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A296370 Numbers m such that 2^m == 3/2 (mod m). 5
 1, 111481, 465793, 79036177, 1781269903307, 250369632905747, 708229497085909, 15673900819204067 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Equivalently, 2^(m+1) == 3 (mod m). Also, numbers m such that 2^(m+1) - 2 is a Fermat pseudoprime base 2, i.e., 2^(m+1) - 2 belongs to A015919 and A006935. Some larger terms (may be not in order): 2338990834231272653581, 341569682872976768698011746141903924998969680637. LINKS Table of n, a(n) for n=1..8. OEIS Wiki, 2^n mod n FORMULA a(n) = A296104(n) - 1. MATHEMATICA Select[Range[10^6], Divisible[2^(# + 1) - 3, #] &] (* Robert Price, Oct 11 2018 *) CROSSREFS Solutions to 2^m == k (mod m): this sequence (k=3/2), A187787 (k=1/2), A296369 (k=-1/2), A000079 (k=0), A006521 (k=-1), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), A128122 (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12) Sequence in context: A228253 A334170 A179919 * A206509 A033446 A033447 Adjacent sequences: A296367 A296368 A296369 * A296371 A296372 A296373 KEYWORD nonn,more AUTHOR Max Alekseyev, Dec 11 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 17 00:23 EDT 2024. Contains 371756 sequences. (Running on oeis4.)