|
|
A015922
|
|
Numbers k such that 2^k == 8 (mod k).
|
|
19
|
|
|
1, 2, 3, 4, 8, 9, 15, 21, 33, 39, 51, 57, 63, 69, 87, 93, 111, 123, 129, 141, 159, 177, 183, 195, 201, 213, 219, 237, 248, 249, 267, 291, 303, 309, 315, 321, 327, 339, 381, 393, 399, 411, 417, 447, 453, 471, 489, 501, 519, 537, 543, 573, 579, 591, 597, 633
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
For all m, 2^A015921(m)-1 belongs to this sequence.
|
|
LINKS
|
Zak Seidov and Michael De Vlieger, Table of n, a(n) for n = 1..29055 (first 6822 terms from Zak Seidov)
OEIS Wiki, 2^n mod n
|
|
MATHEMATICA
|
a015922Q[n_Integer] := If[Mod[2^n, n] == Mod[8, n], True, False];
a015922[n_Integer] :=
Flatten[Position[Thread[a015922Q[Range[n]]], True]];
a015922[1000000] (* Michael De Vlieger, Jul 16 2014 *)
m = 8; Join[Select[Range[m], Divisible[2^# - m, #] &], Select[Range[m + 1, 10^3], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 12 2018 *)
Join[{1, 2, 3, 4, 8}, Select[Range[650], PowerMod[2, #, #]==8&]] (* Harvey P. Dale, Aug 22 2020 *)
|
|
PROG
|
(PARI) isok(n) = Mod(2, n)^n == Mod(8, n); \\ Michel Marcus, Oct 13 2013, Jul 16 2014
|
|
CROSSREFS
|
Contains A033553 as a subsequence.
The odd terms form A276967.
Cf. A015921, A130133, A130134.
Sequence in context: A281089 A242333 A231811 * A212255 A078829 A045583
Adjacent sequences: A015919 A015920 A015921 * A015923 A015924 A015925
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Robert G. Wilson v
|
|
EXTENSIONS
|
First 5 terms inserted by David W. Wilson
|
|
STATUS
|
approved
|
|
|
|