|
|
A078829
|
|
Numbers having exactly one prime contained as binary substring in binary representation of n.
|
|
2
|
|
|
2, 3, 4, 8, 9, 16, 18, 32, 33, 36, 64, 65, 66, 72, 128, 129, 130, 132, 144, 256, 258, 260, 264, 265, 288, 289, 512, 513, 516, 520, 528, 530, 576, 578, 1024, 1025, 1026, 1032, 1040, 1056, 1057, 1060, 1152, 1156, 2048, 2049, 2050, 2052, 2064, 2080, 2112, 2114
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
for k>2 also floor(a(k)/2) belongs to the sequence.
|
|
LINKS
|
|
|
EXAMPLE
|
n=18 -> '10010' contains only 1 distinct binary substring which is prime: '10' (10bbb or bbb10), therefore 18 is a term.
|
|
MATHEMATICA
|
primeCount[n_] := (bits = IntegerDigits[n, 2]; lg = Length[bits]; Reap[Do[If[PrimeQ[p = FromDigits[bits[[i ;; j]], 2]], Sow[p]], {i, 1, lg-1}, {j, i+1, lg}]][[2, 1]] // Union // Length); primeCount[1] = 0; Select[Range[3000], primeCount[#] == 1 &] (* Jean-François Alcover, May 23 2013 *)
|
|
PROG
|
(Haskell)
a078829 n = a078829_list !! (n-1)
a078829_list = filter ((== 1) . a078826) [1..]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base,nice
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|