OFFSET
1,4
LINKS
Alois P. Heinz, Rows n = 1..141, flattened
FORMULA
G.f.: exp( Sum_{k>=1} z^k*B(x^k)/k ), where B(x) = x + x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 11*x^6 + ... = G001190(x)/x - 1 and G001190 is the g.f. for the Wedderburn-Etherington numbers A001190.
G.f.: Product_{j>=1} 1/(1-y*x^j)^A001190(j+1). - Alois P. Heinz, Sep 11 2017
EXAMPLE
MAPLE
g:= proc(n) option remember; `if`(n<2, n, `if`(n::odd, 0,
(t-> t*(1-t)/2)(g(n/2)))+add(g(i)*g(n-i), i=1..n/2))
end:
b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
`if`(min(i, p)<1, 0, add(b(n-i*j, i-1, p-j)*binomial(
g(i+1)+j-1, j), j=0..min(n/i, p)))))
end:
T:= (n, k)-> b(n$2, k):
seq(seq(T(n, k), k=1..n), n=1..14); # Alois P. Heinz, Sep 11 2017
MATHEMATICA
g[n_] := g[n] = If[n<2, n, If[OddQ[n], 0, Function[t, t*(1-t)/2][g[n/2]]] + Sum[g[i]*g[n - i], {i, 1, n/2}]];
b[n_, i_, p_] := b[n, i, p] = If[p>n, 0, If[n == 0, 1, If[Min[i, p]<1, 0, Sum[b[n-i*j, i-1, p-j]*Binomial[g[i+1]+j-1, j], {j, 0, Min[n/i, p]}]]]];
T[n_, k_] := b[n, n, k];
Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 11 2018, after Alois P. Heinz *)
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane, Nov 06 2003
EXTENSIONS
More terms from Vladeta Jovovic, Nov 06 2003
STATUS
approved