login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296376
Natural numbers x such that 7*y^2 = x^2 + x + 1 has a solution in natural numbers.
3
2, 18, 653, 4701, 165986, 1194162, 42159917, 303312573, 10708453058, 77040199506, 2719904916941, 19567907362077, 690845140450082, 4970171429768178, 175471945769404013, 1262403975253755261, 44569183380288169346, 320645639543024068242, 11320397106647425609997, 81442730039952859578333
OFFSET
1,1
COMMENTS
Given explicitly as the numerators of the convergents to the continued fractions
[2,(1,1,1,4)^i,5,(1,1,1,4)^{i-1},1,2] (for n odd and i = (n-1)/2)
and
[2,(1,1,1,4)^i,1,1,2,(1,4,1,1)^i,1] (for n even and i = n/2 - 1).
a(n) == 10 + 8*(-1)^n (mod 21). - Robert Israel, Dec 13 2017
REFERENCES
E.-A. Majol, Note #2228, L'Intermédiaire des Mathématiciens, 9 (1902), pp. 183-185. - N. J. A. Sloane, Mar 02 2022
FORMULA
a(n) = 255*a(n-2) - 255*a(n-4) + a(n-6).
From Colin Barker, Dec 13 2017: (Start)
G.f.: x*(2 + 16*x + 127*x^2 - 16*x^3 - 3*x^4) / ((1 - x)*(1 - 16*x + x^2)*(1 + 16*x + x^2)).
a(n) = a(n-1) + 254*a(n-2) - 254*a(n-3) - a(n-4) + a(n-5) for n>5.
(End)
4*a(n) = 7*( -A077412(n) +17*A077412(n-1) ) -3*( (-1)^n*A077412(n) -15*(-1)^n*A077412(n-1) ) - 2 . - R. J. Mathar, Mar 07 2022
EXAMPLE
For n = 3 the pair is (x,y) = (653,247).
MAPLE
f:= gfun:-rectoproc({a(n) = 255*a(n-2) - 255*a(n-4) + a(n-6), a(1)=2, a(2)=18, a(3)=653, a(4)=4701, a(5)= 165986, a(6)=1194162}, a(n), remember):
map(f, [$1..30]); # Robert Israel, Dec 12 2017
PROG
(PARI) Vec(x*(2 + 16*x + 127*x^2 - 16*x^3 - 3*x^4) / ((1 - x)*(1 - 16*x + x^2)*(1 + 16*x + x^2)) + O(x^25)) \\ Colin Barker, Dec 13 2017
CROSSREFS
Cf. A296377.
Sequence in context: A324308 A071352 A258384 * A013035 A350008 A132520
KEYWORD
nonn,easy
AUTHOR
Jeffrey Shallit, Dec 11 2017
EXTENSIONS
More terms from Robert Israel, Dec 12 2017
STATUS
approved