login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296377
Natural numbers y such that 7y^2 = x^2 + x + 1 has a solution in natural numbers.
3
1, 7, 247, 1777, 62737, 451351, 15934951, 114641377, 4047414817, 29118458407, 1028027428567, 7395973794001, 261114919441201, 1878548225217847, 66322161510636487, 477143853231539137, 16845567908782226497, 121192660172585722951, 4278707926669174893751
OFFSET
1,2
COMMENTS
Given explicitly as the denominators of the convergents to the continued fractions
[2,(1,1,1,4)^i,5,(1,1,1,4)^{i-1},1,2] (for n odd and i = (n-1)/2)
and
[2,(1,1,1,4)^i,1,1,2,(1,4,1,1)^i,1] (for n even and i = n/2 - 1).
REFERENCES
E.-A. Majol, Note #2228, L'Intermédiaire des Mathématiciens, 9 (1902), pp. 183-185. - N. J. A. Sloane, Mar 02 2022
FORMULA
Recurrence: a(n) = 255*a(n-2) - 255*a(n-4) + a(n-6).
From Colin Barker, Dec 11 2017: (Start)
G.f.: x*(1-x)*(1+8*x+x^2) / ((1-16*x+x^2)*(1+16*x+x^2)).
a(n) = 254*a(n-2) - a(n-4) for n>4.
(End)
EXAMPLE
For n = 3 the pair is (x,y) = (653,247).
PROG
(PARI) Vec(x*(1-x)*(1+8*x+x^2) / ((1-16*x+x^2)*(1+16*x+x^2)) + O(x^30)) \\ Colin Barker, Dec 13 2017
CROSSREFS
Cf. A296376.
Sequence in context: A330517 A086214 A133589 * A223630 A203158 A227414
KEYWORD
nonn,easy
AUTHOR
Jeffrey Shallit, Dec 11 2017
STATUS
approved