Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Aug 29 2018 20:42:35
%S 1,1,1,1,2,1,1,3,3,1,1,5,11,5,1,1,7,35,35,7,1,1,11,132,410,132,11,1,1,
%T 15,471,6178,6178,471,15,1,1,22,1806,122038,594203,122038,1806,22,1,1,
%U 30,7042,2921607,85820809,85820809,2921607,7042,30,1
%N Triangle read by rows: T(n,k) is the number of nonisomorphic binary n X n matrices with k 1's per column under row and column permutations.
%H Andrew Howroyd, <a href="/A304942/b304942.txt">Table of n, a(n) for n = 0..527</a>
%H StackExchange, <a href="http://math.stackexchange.com/questions/616834/">How many arrays with crossed cells, order of rows/columns irrelevant</a>, Dec 13 2013
%e Triangle begins (n >=0, k >= 0):
%e 1;
%e 1, 1;
%e 1, 2, 1;
%e 1, 3, 3, 1;
%e 1, 5, 11, 5, 1;
%e 1, 7, 35, 35, 7, 1;
%e 1, 11, 132, 410, 132, 11, 1;
%e 1, 15, 471, 6178, 6178, 471, 15, 1;
%e 1, 22, 1806, 122038, 594203, 122038, 1806, 22, 1;
%e ...
%o (PARI)
%o permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
%o K(q,t,k)={polcoeff(prod(j=1, #q, my(g=gcd(t, q[j])); (1 + x^(q[j]/g) + O(x*x^k))^g), k)}
%o Blocks(n,m,k)={my(s=0); forpart(q=m, s+=permcount(q)*polcoeff(exp(sum(t=1, n, K(q,t,k)/t*x^t) + O(x*x^n)), n)); s/m!}
%o for(n=0, 10, for(k=0, n, print1(Blocks(n,n,k), ", ")); print)
%Y Columns k=1..5 are A000041, A247417, A247596, A247597, A247598.
%Y Cf. A305027.
%K nonn,tabl
%O 0,5
%A _Andrew Howroyd_, May 23 2018