|
|
A304939
|
|
Number of labeled nonempty hypertrees (connected antichains with no cycles) spanning some subset of {1,...,n} without singleton edges.
|
|
2
|
|
|
1, 0, 1, 7, 51, 506, 6843, 118581, 2504855, 62370529, 1788082153, 57997339632, 2099638691439, 83922479506503, 3670657248913385, 174387350448735877, 8942472292255441103, 492294103555090048458, 28958704109012732921523
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
The a(3) = 7 hypertrees are the following:
{{1,2}}
{{1,3}}
{{2,3}}
{{1,2,3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1,3},{2,3}}
|
|
PROG
|
(PARI) \\ here b(n) is A030019 with b(1)=0.
b(n)=if(n<2, n==0, sum(i=0, n, stirling(n-1, i, 2)*n^(i-1)));
a(n)=if(n<1, n==0, sum(k=1, n, binomial(n, k)*b(k))); \\ Andrew Howroyd, Aug 27 2018
|
|
CROSSREFS
|
Cf. A030019, A035053, A048143, A134954, A134955, A134956, A134957, A134959, A144959, A303838, A304867, A304911, A304912, A304918, A305004.
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|