OFFSET
0,4
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..200
FORMULA
a(n) = a(n-1) + A035053(n) for n > 1, a(n) = 1 - n for n < 2.
EXAMPLE
Non-isomorphic representatives of the a(5) = 16 hypertrees are the following:
{{1,2}}
{{1,2,3}}
{{1,2,3,4}}
{{1,2,3,4,5}}
{{1,3},{2,3}}
{{1,4},{2,3,4}}
{{1,5},{2,3,4,5}}
{{1,2,5},{3,4,5}}
{{1,2},{2,5},{3,4,5}}
{{1,3},{2,4},{3,4}}
{{1,4},{2,4},{3,4}}
{{1,4},{2,5},{3,4,5}}
{{1,5},{2,5},{3,4,5}}
{{1,3},{2,4},{3,5},{4,5}}
{{1,4},{2,5},{3,5},{4,5}}
{{1,5},{2,5},{3,5},{4,5}}
PROG
(PARI) \\ here b(n) is A007563 as vector
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
b(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(v)))); v}
seq(n)={my(u=b(n)); Vec(1 + (x*Ser(EulerT(u))*(1-x*Ser(u)) - x)/(1-x))} \\ Andrew Howroyd, Aug 27 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 21 2018
STATUS
approved