login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304938
a(n) is the smallest number which can be written in n different ways as an ordered product of prime factors.
5
1, 6, 12, 24, 48, 30, 192, 384, 768, 72, 3072, 60, 12288, 24576, 144, 98304, 196608, 393216, 786432, 120, 288, 6291456, 12582912, 210, 50331648, 100663296, 201326592, 576, 805306368, 180, 3221225472, 6442450944, 12884901888, 25769803776, 432, 1152, 206158430208, 412316860416, 824633720832, 1649267441664
OFFSET
1,2
COMMENTS
It can be easily demonstrated that a(n) exists for all n and is less than or equal to 2^(n-1)*3 since 2^(n-1)*3 can be written in n different ways.
If n is a prime number then a(n) = 2^(n-1)*3, but there are also nonprime numbers n with this property (e.g., 9 and 14).
If n=k! then a(n) is the product of the first k prime numbers.
Finding the terms up to 2^64 was the focus of the 4th question of the ICPC coding challenge in 2013.
LINKS
The ACM-ICPC International Collegiate Programming Contest, ICPC 2013 problems
FORMULA
a(p) = 2^(p-1)*3 if p is a prime.
a(k!) = prime(k)# is the k-th primorial number. So for no m < k!, prime(k) | a(m). - David A. Corneth, May 24 2018
a(n) = min { k : A008480(k) = n }. - Alois P. Heinz, May 26 2018
EXAMPLE
a(1) = 1 because only a prime power or the empty product (which equals 1) can be written in just one way, and no prime power is smaller than 1.
a(2) = 6 = 3 * 2 = 2 * 3 because none of 3, 4, 5 can be written in two different ways.
a(3) = 12 = 3 * 2 * 2 = 2 * 3 * 2 = 2 * 2 * 3 (each of 7, 8, 9, 10, 11 can be written in at most 2 ways).
a(4) = 24 = 2 * 2 * 2 * 3 (each of 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 can be written in at most 3 ways).
MATHEMATICA
uv=Table[Length[Permutations[Join@@ConstantArray@@@FactorInteger[n]]], {n, 1, 1000}];
Table[Position[uv, k][[1, 1]], {k, Min@@Complement[Range[Max@@uv], uv]-1}] (* Gus Wiseman, Nov 22 2022 *)
PROG
(PARI) a008480(n) = my(f=factor(n)); sum(k=1, #f~, f[k, 2])!/prod(k=1, #f~, f[k, 2]!);
a(n) = {my(k=2); while (a008480(k) !=n, k++); k; } \\ Michel Marcus, May 23 2018
CROSSREFS
Cf. A000961, A007283 (2^n*3), A008480 (number of ordered prime factorizations of n).
Subsequence of A025487.
The sorted version is A358526.
Sequence in context: A199910 A210678 A358508 * A297107 A330997 A331200
KEYWORD
nonn
AUTHOR
Vincent Champain, May 21 2018
STATUS
approved