login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331200
Least number with each record number of factorizations into distinct factors > 1.
7
1, 6, 12, 24, 48, 60, 96, 120, 180, 240, 360, 480, 720, 840, 1080, 1260, 1440, 1680, 2160, 2520, 3360, 4320, 5040, 7560, 8640, 10080, 15120, 20160, 25200, 30240, 40320, 45360, 50400, 55440, 60480, 75600, 90720, 100800, 110880, 120960, 151200, 181440, 221760
OFFSET
1,2
COMMENTS
First differs from A330997 in lacking 64.
LINKS
Jun Kyo Kim, On highly factorable numbers, Journal Of Number Theory, Vol. 72, No. 1 (1998), pp. 76-91.
EXAMPLE
Strict factorizations of the initial terms:
() (6) (12) (24) (48) (60) (96) (120)
(2*3) (2*6) (3*8) (6*8) (2*30) (2*48) (2*60)
(3*4) (4*6) (2*24) (3*20) (3*32) (3*40)
(2*12) (3*16) (4*15) (4*24) (4*30)
(2*3*4) (4*12) (5*12) (6*16) (5*24)
(2*3*8) (6*10) (8*12) (6*20)
(2*4*6) (2*5*6) (2*6*8) (8*15)
(3*4*5) (3*4*8) (10*12)
(2*3*10) (2*3*16) (3*5*8)
(2*4*12) (4*5*6)
(2*3*20)
(2*4*15)
(2*5*12)
(2*6*10)
(3*4*10)
(2*3*4*5)
MATHEMATICA
nn=1000;
strfacs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[strfacs[n/d], Min@@#>d&]], {d, Rest[Divisors[n]]}]];
qv=Table[Length[strfacs[n]], {n, nn}];
Table[Position[qv, i][[1, 1]], {i, Union[qv//.{foe___, x_, y_, afe___}/; x>y:>{foe, x, afe}]}]
CROSSREFS
A subset of A330997.
All terms belong to A025487.
This is the strict version of highly factorable numbers A033833.
The corresponding records are A331232(n) = A045778(a(n)).
Factorizations are A001055 with image A045782 and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
The least number with n strict factorizations is A330974(n).
The least number with A045779(n) strict factorizations is A045780(n)
Sequence in context: A304938 A297107 A330997 * A212116 A160728 A332043
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 12 2020
EXTENSIONS
a(37) and beyond from Giovanni Resta, Jan 17 2020
STATUS
approved