login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least number with each record number of factorizations into distinct factors > 1.
7

%I #12 Jan 17 2020 14:01:01

%S 1,6,12,24,48,60,96,120,180,240,360,480,720,840,1080,1260,1440,1680,

%T 2160,2520,3360,4320,5040,7560,8640,10080,15120,20160,25200,30240,

%U 40320,45360,50400,55440,60480,75600,90720,100800,110880,120960,151200,181440,221760

%N Least number with each record number of factorizations into distinct factors > 1.

%C First differs from A330997 in lacking 64.

%H Giovanni Resta, <a href="/A331200/b331200.txt">Table of n, a(n) for n = 1..122</a>

%H Jun Kyo Kim, <a href="https://doi.org/10.1006/jnth.1998.2238">On highly factorable numbers</a>, Journal Of Number Theory, Vol. 72, No. 1 (1998), pp. 76-91.

%e Strict factorizations of the initial terms:

%e () (6) (12) (24) (48) (60) (96) (120)

%e (2*3) (2*6) (3*8) (6*8) (2*30) (2*48) (2*60)

%e (3*4) (4*6) (2*24) (3*20) (3*32) (3*40)

%e (2*12) (3*16) (4*15) (4*24) (4*30)

%e (2*3*4) (4*12) (5*12) (6*16) (5*24)

%e (2*3*8) (6*10) (8*12) (6*20)

%e (2*4*6) (2*5*6) (2*6*8) (8*15)

%e (3*4*5) (3*4*8) (10*12)

%e (2*3*10) (2*3*16) (3*5*8)

%e (2*4*12) (4*5*6)

%e (2*3*20)

%e (2*4*15)

%e (2*5*12)

%e (2*6*10)

%e (3*4*10)

%e (2*3*4*5)

%t nn=1000;

%t strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];

%t qv=Table[Length[strfacs[n]],{n,nn}];

%t Table[Position[qv,i][[1,1]],{i,Union[qv//.{foe___,x_,y_,afe___}/;x>y:>{foe,x,afe}]}]

%Y A subset of A330997.

%Y All terms belong to A025487.

%Y This is the strict version of highly factorable numbers A033833.

%Y The corresponding records are A331232(n) = A045778(a(n)).

%Y Factorizations are A001055 with image A045782 and complement A330976.

%Y Strict factorizations are A045778 with image A045779 and complement A330975.

%Y The least number with n strict factorizations is A330974(n).

%Y The least number with A045779(n) strict factorizations is A045780(n)

%Y Cf. A045783, A325238, A330972, A330973, A331023/A331024, A331201.

%K nonn

%O 1,2

%A _Gus Wiseman_, Jan 12 2020

%E a(37) and beyond from _Giovanni Resta_, Jan 17 2020