OFFSET
1,2
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..122
Jun Kyo Kim, On highly factorable numbers, Journal Of Number Theory, Vol. 72, No. 1 (1998), pp. 76-91.
EXAMPLE
Representatives for the initial records and their strict factorizations:
() (6) (12) (24) (48) (60) (96) (120)
(2*3) (2*6) (3*8) (6*8) (2*30) (2*48) (2*60)
(3*4) (4*6) (2*24) (3*20) (3*32) (3*40)
(2*12) (3*16) (4*15) (4*24) (4*30)
(2*3*4) (4*12) (5*12) (6*16) (5*24)
(2*3*8) (6*10) (8*12) (6*20)
(2*4*6) (2*5*6) (2*6*8) (8*15)
(3*4*5) (3*4*8) (10*12)
(2*3*10) (2*3*16) (3*5*8)
(2*4*12) (4*5*6)
(2*3*20)
(2*4*15)
(2*5*12)
(2*6*10)
(3*4*10)
(2*3*4*5)
MATHEMATICA
nn=1000;
strfacs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[strfacs[n/d], Min@@#>d&]], {d, Rest[Divisors[n]]}]];
qv=Table[Length[strfacs[n]], {n, nn}];
Union[qv//.{foe___, x_, y_, afe___}/; x>y:>{foe, x, afe}]
PROG
(Python)
def fact(num):
....ret = []
....temp = num
....div = 2
....while temp > 1:
........while temp % div == 0:
............ret.append(div)
............temp //= div
........div += 1
....return ret
def all_partitions(lst):
....if lst:
........x = lst[0]
........for partition in all_partitions(lst[1:]):
............yield [x] + partition
............for i, _ in enumerate(partition):
................partition[i] *= x
................yield partition
................partition[i] //= x
....else:
........yield []
best = 0
terms = [0]
q = 2
while len(terms) < 100:
....total_set = set()
....factors = fact(q)
....total_set = set(tuple(sorted(x)) for x in all_partitions(factors) if len(x) == len(set(x)))
....if len(total_set) > best:
........best = len(total_set)
........terms.append(best)
........print(q, best)
....q += 2#only check evens
print(terms)
# David Consiglio, Jr., Jan 14 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 12 2020
EXTENSIONS
a(26)-a(37) from David Consiglio, Jr., Jan 14 2020
a(38) and beyond from Giovanni Resta, Jan 17 2020
STATUS
approved