login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331232
Record numbers of factorizations into distinct factors > 1.
6
1, 2, 3, 5, 7, 9, 10, 16, 18, 25, 34, 38, 57, 59, 67, 70, 91, 100, 117, 141, 161, 193, 253, 296, 306, 426, 552, 685, 692, 960, 1060, 1067, 1216, 1220, 1589, 1591, 1912, 2029, 2157, 2524, 2886, 3249, 3616, 3875, 4953, 5147, 5285, 5810, 6023, 6112, 6623, 8129
OFFSET
1,2
LINKS
Jun Kyo Kim, On highly factorable numbers, Journal Of Number Theory, Vol. 72, No. 1 (1998), pp. 76-91.
FORMULA
a(n) = A045778(A331200(n)).
EXAMPLE
Representatives for the initial records and their strict factorizations:
() (6) (12) (24) (48) (60) (96) (120)
(2*3) (2*6) (3*8) (6*8) (2*30) (2*48) (2*60)
(3*4) (4*6) (2*24) (3*20) (3*32) (3*40)
(2*12) (3*16) (4*15) (4*24) (4*30)
(2*3*4) (4*12) (5*12) (6*16) (5*24)
(2*3*8) (6*10) (8*12) (6*20)
(2*4*6) (2*5*6) (2*6*8) (8*15)
(3*4*5) (3*4*8) (10*12)
(2*3*10) (2*3*16) (3*5*8)
(2*4*12) (4*5*6)
(2*3*20)
(2*4*15)
(2*5*12)
(2*6*10)
(3*4*10)
(2*3*4*5)
MATHEMATICA
nn=1000;
strfacs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[strfacs[n/d], Min@@#>d&]], {d, Rest[Divisors[n]]}]];
qv=Table[Length[strfacs[n]], {n, nn}];
Union[qv//.{foe___, x_, y_, afe___}/; x>y:>{foe, x, afe}]
PROG
(Python)
def fact(num):
....ret = []
....temp = num
....div = 2
....while temp > 1:
........while temp % div == 0:
............ret.append(div)
............temp //= div
........div += 1
....return ret
def all_partitions(lst):
....if lst:
........x = lst[0]
........for partition in all_partitions(lst[1:]):
............yield [x] + partition
............for i, _ in enumerate(partition):
................partition[i] *= x
................yield partition
................partition[i] //= x
....else:
........yield []
best = 0
terms = [0]
q = 2
while len(terms) < 100:
....total_set = set()
....factors = fact(q)
....total_set = set(tuple(sorted(x)) for x in all_partitions(factors) if len(x) == len(set(x)))
....if len(total_set) > best:
........best = len(total_set)
........terms.append(best)
........print(q, best)
....q += 2#only check evens
print(terms)
# David Consiglio, Jr., Jan 14 2020
CROSSREFS
The non-strict version is A272691.
The first appearance of a(n) in A045778 is at index A331200(n).
Factorizations are A001055 with image A045782 and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
The least number with n strict factorizations is A330974(n).
The least number with A045779(n) strict factorizations is A045780(n).
Sequence in context: A362403 A379155 A075750 * A219050 A036049 A092875
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 12 2020
EXTENSIONS
a(26)-a(37) from David Consiglio, Jr., Jan 14 2020
a(38) and beyond from Giovanni Resta, Jan 17 2020
STATUS
approved