The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A304936 a(n) = [x^n] 1/(1 - n*x/(1 - x - n*x/(1 - x - n*x/(1 - x - n*x/(1 - x - n*x/(1 - ...)))))), a continued fraction. 0
 1, 1, 10, 183, 5076, 191105, 9140118, 531731935, 36496595656, 2889768574449, 259443165181410, 26054614893427703, 2894791106297891100, 352618782117325104849, 46736101530152250554926, 6696645353339606889836415, 1031600569146491935984293648, 170029083604373881344301895585 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Table of n, a(n) for n=0..17. FORMULA a(n) = [x^n] 2/(1 + x + sqrt(1 - x*(2 + 4*n - x))). a(n) = Sum_{k=0..n} (-1)^(n-k)*(n + 1)^k*binomial(n,k)*binomial(n+k,k)/(k + 1). a(n) ~ exp(1/2) * 2^(2*n) * n^(n - 3/2) / sqrt(Pi). - Vaclav Kotesovec, Jun 08 2019 MATHEMATICA Table[SeriesCoefficient[1/(1 + ContinuedFractionK[-n x, 1 - x, {i, 1, n}]), {x, 0, n}], {n, 0, 17}] Table[SeriesCoefficient[2/(1 + x + Sqrt[1 - x (2 + 4 n - x)]), {x, 0, n}], {n, 0, 17}] Table[Sum[(-1)^(n - k) (n + 1)^k Binomial[n, k] Binomial[n + k, k]/(k + 1), {k, 0, n}], {n, 0, 17}] Table[(-1)^n Hypergeometric2F1[-n, n + 1, 2, n + 1], {n, 0, 17}] CROSSREFS Cf. A001003, A107841, A131763, A131765, A131846, A131869, A131926, A131927, A292798. Sequence in context: A064092 A171513 A240405 * A239764 A364987 A179521 Adjacent sequences: A304933 A304934 A304935 * A304937 A304938 A304939 KEYWORD nonn AUTHOR Ilya Gutkovskiy, May 21 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 04:31 EDT 2024. Contains 372807 sequences. (Running on oeis4.)