login
A190528
Number of n-step one-sided prudent walks avoiding exactly three consecutive West steps.
1
1, 3, 7, 16, 39, 92, 219, 521, 1238, 2944, 6999, 16640, 39562, 94058, 223623, 531663, 1264027, 3005221, 7144904, 16986989, 40386518, 96018831, 228284497, 542745740, 1290376448, 3067866323, 7293843428, 17341091936, 41228396592, 98020395245
OFFSET
0,2
FORMULA
G.f.: x*(1+x-x^3+x^4)/(1-2*x-x^2+x^4-x^5).
a(0)=1, a(1)=3, a(2)=7, a(3)=16, a(4)=39, a(n)=2*a(n-1)+a(n-2)- a(n-4)+ a(n-5) [From Harvey P. Dale, Sep 20 2011]
EXAMPLE
a(3)=16 since there are 16 such walks: WWN, NWW, WNN, WNW, WNE, NNN, NNW, NNE, NEE, NWN, NEN, EEE, EEN, ENW, ENN, ENE.
MATHEMATICA
Rest[CoefficientList[Series[x (1+x-x^3+x^4)/(1-2x-x^2+x^4-x^5), {x, 0, 40}], x]] (* or *) LinearRecurrence[{2, 1, 0, -1, 1}, {1, 3, 7, 16, 39}, 40] (* Harvey P. Dale, Sep 20 2011 *)
PROG
(PARI) Vec(x*(1+x-x^3+x^4)/(1-2*x-x^2+x^4-x^5)+O(x^66)) \\ Joerg Arndt, May 13 2011
CROSSREFS
Sequence in context: A227235 A304937 A152090 * A203611 A176604 A014140
KEYWORD
nonn,walk
AUTHOR
Shanzhen Gao, May 11 2011
STATUS
approved