login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/sqrt(1-4*x) - x/sqrt(1-4*x^2).
5

%I #10 Feb 01 2024 00:26:27

%S 1,1,6,18,70,246,924,3412,12870,48550,184756,705180,2704156,10399676,

%T 40116600,155114088,601080390,2333593350,9075135300,35345215180,

%U 137846528820,538257689684,2104098963720,8233430022168,32247603683100

%N Expansion of 1/sqrt(1-4*x) - x/sqrt(1-4*x^2).

%C Partial sums are A129368.

%H G. C. Greubel, <a href="/A129369/b129369.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = binomial(2*n, n) - (1/2)*(1-(-1)^n)*binomial(n-1, (n-1)/2).

%F From _G. C. Greubel_, Jan 31 2024: (Start)

%F a(2*n) = A001448(n).

%F a(2*n+1) = (n+1)*( 2*A000108(2*n+1) - A000108(n) ).

%F a(2*n+1) = 2*A002458(n) - A000984(n).

%F (n+1)^3*(n+2)*(n+3)*a(n+3) = 2*(n+1)*(n+2)^3*(2*n+1)*a(n+2) + 4*(n+1)^4*(n+3)*a(n+1) - 8*n*(n+2)^3*(2*n+1)*a(n), with a(0)=a(1) = 1, a(2) = 6. (End)

%t CoefficientList[Series[1/Sqrt[1-4x]-x/Sqrt[1-4x^2],{x,0,30}],x] (* _Harvey P. Dale_, Feb 02 2012 *)

%o (Magma) B:=Binomial; [B(2*n,n) - (n mod 2)*B(n-1, Floor((n-1)/2)): n in [0..60]]; // _G. C. Greubel_, Jan 31 2024

%o (SageMath) [binomial(2*n,n) - (n%2)*binomial(n-1, (n-1)//2) for n in range(61)] # _G. C. Greubel_, Jan 31 2024

%Y Cf. A000108, A000984, A001448, A002458, A129368.

%K easy,nonn

%O 0,3

%A _Paul Barry_, Apr 11 2007