The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A242278 Number of non-palindromic n-tuples of 3 distinct elements. 4
 0, 6, 18, 72, 216, 702, 2106, 6480, 19440, 58806, 176418, 530712, 1592136, 4780782, 14342346, 43040160, 129120480, 387400806, 1162202418, 3486725352, 10460176056, 31380882462, 94142647386, 282429005040, 847287015120, 2541864234006, 7625592702018, 22876787671992 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Table of n, a(n) for n=1..28. FORMULA a(n) = 1/2 * 3^(n/2) * ((sqrt(3)-1)*(-1)^n - sqrt(3)-1) + 3^n. a(n) = 3^n - 3^ceiling(n/2). a(n) = A000244(n) - A056449(n). G.f.: (6*x) / (1 - 3*x - 3*x^2 + 9*x^3). a(n) = 6*A167993(n). [Bruno Berselli, Aug 19 2014] EXAMPLE For n=3, the a(3)=18 solutions (non-palindromic 3-tuples) are: {0,0,1}, {0,0,2}, {0,1,1}, {0,1,2}, {0,2,1}, {0,2,2}, {1,0,0}, {1,0,2}, {1,1,0}, {1,1,2}, {1,2,0}, {1,2,2}, {2,0,0}, {2,0,1}, {2,1,0}, {2,1,1}, {2,2,0}, {2,2,1}. MAPLE A242278:=n->(1/2)* 3^(n/2) * ((sqrt(3)-1) * (-1)^n - sqrt(3)-1) + 3^n: seq(A242278(n), n=1..28); # Wesley Ivan Hurt, Aug 17 2014. MATHEMATICA Table[1/2 * 3^(n/2) * ((Sqrt(3)-1) * (-1)^n - Sqrt(3)-1) + 3^n, {n, 28}] PROG (PARI) a(n)=3^n-3^ceil(n/2) \\ Charles R Greathouse IV, Dec 10 2014 CROSSREFS Cf. A167993, A233411, A242026, A240437. Sequence in context: A129369 A095853 A027266 * A129796 A129790 A121156 Adjacent sequences: A242275 A242276 A242277 * A242279 A242280 A242281 KEYWORD nonn,easy AUTHOR Mikk Heidemaa, Aug 16 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 8 04:57 EDT 2023. Contains 363157 sequences. (Running on oeis4.)