login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242281
Smaller member of a Sophie Germain pair in which each member of the pair is the smaller of its prime pair (p, (p*p*p)+2).
1
419, 761, 911, 1601, 2351, 6269, 6551, 9029, 22259, 28559, 28949, 37139, 52571, 56531, 67559, 70379, 78509, 108359, 114641, 133571, 135119, 138179, 146669, 153449, 176021, 187409, 193841, 200639, 252761, 288731, 303581, 312551, 333479, 337349, 407639, 408389
OFFSET
1,1
LINKS
EXAMPLE
a(1): p = 419; (2*p)+1 = 839
Prime Pairs of the form (p,p**3+2): (419, 73560061) and (839, 590589721)
a(2): p = 761; (2*p)+1 = 1523
Prime Pairs (761, 440711083) and (1523, 3532642669)
PROG
(Python)
p1=2
n=2
count=0
while p1>2:
....## Generate the pair
....cc=[]
....cc.append(p1)
....for i in range(1, n):
........cc.append((2**(i)*p1+((2**i)-1)))
....## chain entries cubed + 2
....cc2=[(c*c*c)+2 for c in cc]
....## check if cc is a Sophie Germain Pair or not
....## pf.isp_list returns True or false for a given list of numbers
....## if they are prime or not
....##
....pcc=pf.isp_list(cc)
....pcc2=pf.isp_list(cc2)
....## Number of primes for cc
....npcc=pcc.count(True)
....## Number of primes for cc2
....npcc2=pcc2.count(True)
....if npcc==n and npcc2==n:
........print "For length ", n, " the series is : ", cc, " and ", cc2
....p1=pf.nextp(p1)
CROSSREFS
KEYWORD
nonn,hard
AUTHOR
Abhiram R Devesh, May 10 2014
STATUS
approved