Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 May 15 2014 10:58:11
%S 419,761,911,1601,2351,6269,6551,9029,22259,28559,28949,37139,52571,
%T 56531,67559,70379,78509,108359,114641,133571,135119,138179,146669,
%U 153449,176021,187409,193841,200639,252761,288731,303581,312551,333479,337349,407639,408389
%N Smaller member of a Sophie Germain pair in which each member of the pair is the smaller of its prime pair (p, (p*p*p)+2).
%H Abhiram R Devesh, <a href="/A242281/b242281.txt">Table of n, a(n) for n = 1..675</a>
%e a(1): p = 419; (2*p)+1 = 839
%e Prime Pairs of the form (p,p**3+2): (419, 73560061) and (839, 590589721)
%e a(2): p = 761; (2*p)+1 = 1523
%e Prime Pairs (761, 440711083) and (1523, 3532642669)
%o (Python)
%o p1=2
%o n=2
%o count=0
%o while p1>2:
%o ....## Generate the pair
%o ....cc=[]
%o ....cc.append(p1)
%o ....for i in range(1, n):
%o ........cc.append((2**(i)*p1+((2**i)-1)))
%o ....## chain entries cubed + 2
%o ....cc2=[(c*c*c)+2 for c in cc]
%o ....## check if cc is a Sophie Germain Pair or not
%o ....## pf.isp_list returns True or false for a given list of numbers
%o ....## if they are prime or not
%o ....##
%o ....pcc=pf.isp_list(cc)
%o ....pcc2=pf.isp_list(cc2)
%o ....## Number of primes for cc
%o ....npcc=pcc.count(True)
%o ....## Number of primes for cc2
%o ....npcc2=pcc2.count(True)
%o ....if npcc==n and npcc2==n:
%o ........print "For length ", n, " the series is : ", cc, " and ", cc2
%o ....p1=pf.nextp(p1)
%Y Cf. A048636, A237188, A237256.
%K nonn,hard
%O 1,1
%A _Abhiram R Devesh_, May 10 2014