login
A364359
Primes that are the concatenation of a square and a prime that is the concatenation of two squares.
2
419, 911, 919, 941, 1181, 1499, 1619, 1811, 4919, 8111, 9181, 9491, 9811, 11699, 12119, 12251, 14411, 14419, 16481, 16811, 19001, 22511, 22541, 32411, 32441, 36251, 44111, 44119, 44729, 49499, 49811, 52919, 57641, 64499, 64811, 67619, 72911, 81181, 90011, 90019, 91009, 92251, 94441, 97841, 98419
OFFSET
1,1
COMMENTS
Primes that are the concatenation of a square and a member of A167535.
LINKS
EXAMPLE
a(5) = 1181 is a term because it is the concatenation of 1^2 = 1, 1^2 =1 and 9^2 = 81, and 181 and 1181 are primes.
MAPLE
for d from 1 to 3 do
m1:= ceil(10^((d-1)/2));
m2:= floor(sqrt(10^d - 1));
S[d]:= {seq(i^2, i=m1..m2)};
if m1::even then m1:= m1+1 fi;
So[d]:= {seq(i^2, i=m1..m2, 2)};
od:
for d from 2 to 4 do P2[d]:= select(isprime, {seq(seq(seq(10^i*s+t, t=So[i]), s=S[d-i]), i=1..d-1)}) od:
for d from 3 to 5 do P3[d]:= select(isprime, {seq(seq(seq(10^i*s+t, t=P2[i]), s=S[d-i]), i=2..d-1)}) od:
sort([seq](op(P3[d]), d=3..5));
CROSSREFS
Cf. A167535.
Sequence in context: A142281 A242281 A142733 * A060230 A255097 A130737
KEYWORD
nonn,base
AUTHOR
Robert Israel, Oct 20 2023
STATUS
approved