login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364361
Table read by rows. T(n, k) = Sum_{j=0..n-k} k*binomial(k, j)*binomial(n - j, k).
2
0, 0, 1, 0, 3, 2, 0, 5, 10, 3, 0, 7, 26, 21, 4, 0, 9, 50, 75, 36, 5, 0, 11, 82, 189, 164, 55, 6, 0, 13, 122, 387, 516, 305, 78, 7, 0, 15, 170, 693, 1284, 1155, 510, 105, 8, 0, 17, 226, 1131, 2724, 3405, 2262, 791, 136, 9, 0, 19, 290, 1725, 5156, 8415, 7734, 4025, 1160, 171, 10
OFFSET
0,5
FORMULA
T(2*n, n) = n * LegendreP(n, 3).
EXAMPLE
The triangle begins:
[0] 0;
[1] 0, 1;
[2] 0, 3, 2;
[3] 0, 5, 10, 3;
[4] 0, 7, 26, 21, 4;
[5] 0, 9, 50, 75, 36, 5;
[6] 0, 11, 82, 189, 164, 55, 6;
[7] 0, 13, 122, 387, 516, 305, 78, 7;
[8] 0, 15, 170, 693, 1284, 1155, 510, 105, 8;
[9] 0, 17, 226, 1131, 2724, 3405, 2262, 791, 136, 9;
Seen as an array:
[0] 0, 1, 2, 3, 4, 5, 6, 7, ... A001477
[1] 0, 3, 10, 21, 36, 55, 78, 105, ... A014105
[2] 0, 5, 26, 75, 164, 305, 510, 791, ... A048395
[3] 0, 7, 50, 189, 516, 1155, 2262, 4025, ...
[4] 0, 9, 82, 387, 1284, 3405, 7734, 15687, ...
[5] 0, 11, 122, 693, 2724, 8415, 21918, 50281, ...
[6] 0, 13, 170, 1131, 5156, 18265, 53934, 138775, ...
[7] 0, 15, 226, 1725, 8964, 35915, 118950, 340473, ...
MAPLE
T := (n, k) -> local j; add(k*binomial(k, j)*binomial(n-j, k), j = 0..n-k):
seq(seq(T(n, k), k = 0..n), n = 0..10);
CROSSREFS
Cf. A364553 (row sums), A364634 (main diagonal).
Columns: A005408, A069894.
Sequence in context: A326296 A246773 A359843 * A338022 A253176 A079408
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jul 30 2023
STATUS
approved