OFFSET
1,2
LINKS
Robert Israel, Rows n = 1..141, flattened
FORMULA
a(n) = A004736(n)^2.
Sum_{k=0..n-1} T(n, k) = A000330(n) (row sums). - Michel Marcus, Dec 31 2012
G.f. as triangle: x*(1+x)/((1-x*y)*(1-x)^3). - Robert Israel, Jan 18 2018
Sum_{k=0..n-1} (-1)^k*T(n, k) = A000217(n) (alternating row sums). - Omar E. Pol, Jan 24 2014
From G. C. Greubel, Jan 31 2024: (Start)
T(2*n-1, n-1) = A000290(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A000292(n).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A194274(n).
Sum_{k=0..floor(n/2)} T(n, k) = A129371(n). (End)
EXAMPLE
From Omar E. Pol, Jan 26 2014: (Start)
Triangle begins:
1;
4, 1;
9, 4, 1;
16, 9, 4, 1;
25, 16, 9, 4, 1;
36, 25, 16, 9, 4, 1;
49, 36, 25, 16, 9, 4, 1;
64, 49, 36, 25, 16, 9, 4, 1;
81, 64, 49, 36, 25, 16, 9, 4, 1;
100, 81, 64, 49, 36, 25, 16, 9, 4, 1;
...
For n = 7 the row sum is 49 + 36 + 25 + 16 + 9 + 4 + 1 = A000330(7) = 140.
The alternating row sum is 49 - 36 + 25 - 16 + 9 - 4 + 1 = A000217(7) = 28.
(End)
MAPLE
MATHEMATICA
Table[Range[n, 1, -1]^2, {n, 20}]//Flatten (* Harvey P. Dale, Apr 17 2020 *)
PROG
(Magma) [(n-k)^2: k in [0..n-1], n in [1..15]]; // G. C. Greubel, Jan 31 2024
(SageMath) flatten([[(n-k)^2 for k in range(n)] for n in range(1, 16)]) # G. C. Greubel, Jan 31 2024
CROSSREFS
KEYWORD
AUTHOR
Henry Bottomley, Jun 26 2000
STATUS
approved