login
A104796
Triangle read by rows: T(n,k) = (n+1-k)*Fibonacci(n+2-k), for n>=1, 1<=k<=n.
2
1, 4, 1, 9, 4, 1, 20, 9, 4, 1, 40, 20, 9, 4, 1, 78, 40, 20, 9, 4, 1, 147, 78, 40, 20, 9, 4, 1, 272, 147, 78, 40, 20, 9, 4, 1, 495, 272, 147, 78, 40, 20, 9, 4, 1, 890, 495, 272, 147, 78, 40, 20, 9, 4, 1, 1584, 890, 495, 272, 147, 78, 40, 20, 9, 4, 1, 2796, 1584, 890, 495, 272
OFFSET
1,2
COMMENTS
The first column is A023607 (without the leading zero).
LINKS
EXAMPLE
Rows 1,2,3,4,5,6 and columns 1,2,3,4,5,6 of the triangle are:
1;
4, 1;
9, 4, 1;
20, 9, 4, 1;
40, 20, 9, 4, 1;
78, 40, 20, 9, 4, 1;
...
Row 3 for example is 3*F(4), 2*F(3), 1*F(2) = 3*3, 2*2, 1*1 = 9, 4, 1.
Row 4 is 4*F(5), 3*F(4), 2*F(3), 1*F(2) = 4*5, 3*3, 2*2, 1*1 = 20, 9, 4, 1.
Reading the rows backwards gives an initial segment of the terms of A023607 (but without the initial zero).
MATHEMATICA
Table[(n+1-k)Fibonacci[n+2-k], {n, 20}, {k, n}]//Flatten (* Harvey P. Dale, Sep 24 2020 *)
Module[{nn=20, c}, c=LinearRecurrence[{2, 1, -2, -1}, {1, 4, 9, 20}, nn]; Table[ Reverse[ Take[c, n]], {n, nn}]]//Flatten (* Harvey P. Dale, Sep 25 2020 *)
CROSSREFS
Row sums are in A094584.
Sequence in context: A085691 A055461 A324999 * A132020 A175643 A143864
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Mar 26 2005
EXTENSIONS
Edited by Ralf Stephan, Apr 05 2009
Entry revised by N. J. A. Sloane, Sep 23 2020
STATUS
approved