OFFSET
1,2
COMMENTS
Makowski proved that phi(n)+Sigma[n] = nd[n] iff n is a prime (see in Sivaramakrishnan, Chapter I, page 8, Theorem 3).
REFERENCES
Sivaramakrishnan, R. (1989): Classical Theory of Arithmetical Functions Marcel Dekker, Inc., New York-Basel.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
FORMULA
EXAMPLE
It is true for all primes and some composites. n = 99, 6 divisors, Sigma = 156, Phi = 60, 156+60 = 216 = 6*36, k = 36.
MATHEMATICA
okQ[n_]:=Divisible[EulerPhi[n]+DivisorSigma[1, n], DivisorSigma[0, n]]
Select[Range[125], okQ] (* Harvey P. Dale, Mar 06 2011 *)
PROG
(PARI) isok(n) = !((eulerphi(n) + sigma(n)) % numdiv(n)); \\ Michel Marcus, Dec 01 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jun 27 2000
STATUS
approved