login
A055464
Numbers n such that sum of EulerPhi and DivisorSum is an integer multiple of the number of divisors.
1
1, 2, 3, 4, 5, 7, 11, 13, 15, 17, 19, 21, 23, 25, 29, 30, 31, 33, 35, 37, 39, 41, 43, 45, 47, 48, 49, 51, 53, 55, 56, 57, 59, 61, 65, 67, 69, 70, 71, 73, 77, 78, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 102, 103, 105, 107, 109, 110, 111, 113, 115, 119, 121, 123
OFFSET
1,2
COMMENTS
Makowski proved that phi(n)+Sigma[n] = nd[n] iff n is a prime (see in Sivaramakrishnan, Chapter I, page 8, Theorem 3).
REFERENCES
Sivaramakrishnan, R. (1989): Classical Theory of Arithmetical Functions Marcel Dekker, Inc., New York-Basel.
LINKS
FORMULA
Solutions to Phi[x]+Sigma[x] = kd[x] or A000203(n)+A000010(n) = k*A000005(n), where k is integer.
EXAMPLE
It is true for all primes and some composites. n = 99, 6 divisors, Sigma = 156, Phi = 60, 156+60 = 216 = 6*36, k = 36.
MATHEMATICA
okQ[n_]:=Divisible[EulerPhi[n]+DivisorSigma[1, n], DivisorSigma[0, n]]
Select[Range[125], okQ] (* Harvey P. Dale, Mar 06 2011 *)
PROG
(PARI) isok(n) = !((eulerphi(n) + sigma(n)) % numdiv(n)); \\ Michel Marcus, Dec 01 2017
CROSSREFS
Sequence in context: A001087 A191876 A234719 * A139316 A062972 A231878
KEYWORD
nonn
AUTHOR
Labos Elemer, Jun 27 2000
STATUS
approved