OFFSET
1,2
COMMENTS
Makowski proved that phi(k) + sigma(k) = k*d(k) if and only if k is a prime (see in Sivaramakrishnan, Chapter I, page 8, Theorem 3).
2 is the only prime term of this sequence.
Contains p^2 if p is a prime == 2 or 7 (mod 9), and p*q if p and q are distinct primes with p*q == 7 (mod 8). - Robert Israel, Jan 18 2018
REFERENCES
R. Sivaramakrishnan, Classical Theory of Arithmetic Functions, Marcel Dekker, Inc., New York and Basel, 1989.
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
A. Makowski, Problem 339, Elemente der Mathematik, Vol. 13 (1958), p. 115; alternative link.
C. A. Nicol, Problem E 1674, The American Mathematical Monthly, Vol. 71, No. 3 (1964), p. 317; Another characterization of prime number, Solutions to Problem E 1674 by Martin J. Cohen and J. A. Fridy, ibid., Vol. 72, No. 2 (1965), pp. 186-187.
FORMULA
EXAMPLE
78 is a term since it has 8 divisors, phi(78) = 24, sigma(78) = 168, and 24 + 168 = 192 = 3 * 8^2.
MAPLE
filter:= proc(n) uses numtheory;
phi(n)+sigma(n) mod tau(n)^2 = 0
end proc:
select(filter, [$1..1000]); # Robert Israel, Jan 18 2018
MATHEMATICA
okQ[n_] := Divisible[EulerPhi[n] + DivisorSigma[1, n], DivisorSigma[0, n]^2];
Select[Range[1000], okQ] (* Jean-François Alcover, May 11 2023 *)
PROG
(PARI) is(n) = {my(f = factor(n)); (eulerphi(f) + sigma(f)) % numdiv(f)^2 == 0; } \\ Amiram Eldar, Mar 25 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jun 27 2000
STATUS
approved