login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055468
Composite numbers k for which phi(k) + sigma(k) is an integer multiple of the 4th power of the number of divisors of k.
4
121, 125, 511, 767, 895, 1535, 1919, 2047, 2559, 2815, 3071, 3199, 3327, 3455, 3711, 3839, 4223, 4351, 4479, 4607, 4735, 4863, 5262, 5631, 5726, 5759, 5902, 5966, 6014, 6527, 7167, 7295, 7423, 7679, 7807, 8063, 9599, 9727, 9819, 9983, 10239
OFFSET
1,1
COMMENTS
Makowski proved that phi(k) + sigma(k) = k*d(k) if and only if k is a prime (see in Sivaramakrishnan, Chapter I, page 8, Theorem 3). Generally, when phi(k) + sigma(k) = m*d(k) there are special cases in which phi(k) + sigma(k) is divisible by higher powers of the number of divisors d(k).
This sequence is infinite: it includes all the semiprimes p*q such that p == 1 (mod 128), and q == 127 (mod 128). - Amiram Eldar, Mar 25 2024
REFERENCES
R. Sivaramakrishnan, Classical Theory of Arithmetic Functions, Marcel Dekker, Inc., New York and Basel, 1989.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
A. Makowski, Problem 339, Elemente der Mathematik, Vol. 13 (1958), p. 115; alternative link.
C. A. Nicol, Problem E 1674, The American Mathematical Monthly, Vol. 71, No. 3 (1964), p. 317; Another characterization of prime number, Solutions to Problem E 1674 by Martin J. Cohen and J. A. Fridy, ibid., Vol. 72, No. 2 (1965), pp. 186-187.
FORMULA
Integer solutions of phi(x) + sigma(x) = m * d(x)^4 or A000010(x) + A000203(x) = m * A000005(k)^4, where m is an integer.
EXAMPLE
511 is a term since it has 4 divisors, phi(511) = 432, sigma(511) = 592, and 432 + 592 = 1024 = 4 * 4^4.
MATHEMATICA
Select[Range[10000], CompositeQ[#] && Divisible[EulerPhi[#] + DivisorSigma[1, #], DivisorSigma[0, #]^4] &] (* Amiram Eldar, Mar 25 2024 *)
PROG
(PARI) is(n)=my(f=factor(n)); (eulerphi(f)+sigma(f))%numdiv(f)^4==0 && !isprime(n) \\ Charles R Greathouse IV, Mar 01 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jun 27 2000
STATUS
approved