The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A055467 Nonprime numbers for which phi(n) + sigma(n) is an integer multiple of the cube of the number of divisors. 1
 1, 95, 99, 121, 125, 159, 287, 319, 415, 447, 511, 543, 654, 671, 703, 767, 799, 831, 895, 959, 1055, 1119, 1247, 1343, 1390, 1495, 1535, 1631, 1727, 1849, 1919, 1983, 2043, 2047, 2060, 2261, 2271, 2335, 2463, 2495, 2559, 2623, 2815, 2828, 2883, 2911 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Makowski proved that phi(n) + sigma(n) = nd(n) if and only if n is a prime (see in Sivaramakrishnan, Chapter I, page 8, Theorem 3). In more special cases, k differs from n and phi(n) + sigma(n) is divisible by higher powers of the number of divisors. REFERENCES Sivaramakrishnan, R. (1989): Classical Theory of Arithmetical Functions, Marcel Dekker, Inc., New York-Basel. LINKS Matthew House, Table of n, a(n) for n = 1..10000 FORMULA Integer solutions of phi(x) + sigma(x) = k*d(x)^3 or A000203(n) + A000010(n) = k*A000005(n)^3, where k is an integer. EXAMPLE n = 95 with 4 divisors, sigma(95) = 120, phi(95) = 72 72 + 120 = 192 = 3 * 4 * 4 * 4, k = 3. MATHEMATICA Select[Range[10000], ! PrimeQ[#] && Mod[EulerPhi[#] + DivisorSigma[1, #], DivisorSigma[0, #]^3] == 0 &] (* Matthew House, Dec 28 2016 *) CROSSREFS Cf. A000005, A000010, A000203. Sequence in context: A300007 A067266 A171403 * A057654 A338601 A338582 Adjacent sequences:  A055464 A055465 A055466 * A055468 A055469 A055470 KEYWORD nonn AUTHOR Labos Elemer, Jun 27 2000 EXTENSIONS Definition corrected by Matthew House, Dec 28 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 22:12 EST 2022. Contains 350466 sequences. (Running on oeis4.)