The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A134328 Write n in base 10 as d1d2d3.....dk; for a list of primes P = (p1,p2,p3,....pk) with p1B(p,n) if it exists, otherwise 0. 0
 0, 121, 125, 625, 32, 64, 128, 256, 512, 0, 0, 219122, 24344, 4802, 6250, 31250, 4374, 13122, 39366, 0, 10170397, 24964, 8575, 2500, 12500, 2916, 8748, 26244, 78732, 31855013, 118459, 6125, 2744, 5000, 25000, 5832, 17496, 52488, 157464, 279841 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Computing the number of digits of A and B, it is easy to prove that for any n written only with 0 and 1, there is no solution, hence a(n) = 0. The same thing is true for some other numbers such as 201,210,211,300,. . . . Any number of the submitted sequence a(n) of numbers A(P,n) satisfying the condition defines univocally and the number n and the vector P.On the contrary it should be not pertinent to submit the sequence of the associated numbers B(P,n) as the value of such a number does not define always univocally n and P. For example for n=26, a(n)=2916=(2^2)*(3^6) and B({2;3},26)=2236 which should be also be associated with A=223^6, as 223 is prime. LINKS Table of n, a(n) for n=1..40. EXAMPLE For any p of q digits, p^1 contains q digits, but p&1 contains q+1 digits, hence a(1)=0 For p1 = 2,3,5 and 7, p1^2

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 1 18:30 EST 2024. Contains 370443 sequences. (Running on oeis4.)